cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A129402 Expansion of phi(x^3) * psi(x^4) + x * phi(x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 0, 2, 0, 0, 2, 0, 3, 1, 2, 2, 2, 4, 0, 0, 0, 0, 2, 0, 3, 0, 2, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 3, 4, 2, 1, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 3, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, 0, 4, 3, 2, 2, 0, 4, 0, 2, 0, 0, 4, 0, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Apr 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f = 1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^10 + 3*x^12 + x^13 + 2*x^14 + ...
G.f. = q + q^3 + 2*q^5 + 2*q^7 + q^9 + 2*q^11 + 2*q^15 + 2*q^21 + 3*q^25 + q^27 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.57).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ x^3] QPochhammer[ -x, x] QPochhammer[ x^6, -x^6], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A)^3 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of f(x^2) * f(-x^3) / (chi(-x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^3) * eta(x^4)^3 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)^12) in powers of q.
Euler transform of period 24 sequence [ 1, 1, 0, -2, 1, -1, 1, -1, 0, 1, 1, -2, 1, 1, 0, -1, 1, -1, 1, -2, 0, 1, 1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 24^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A190611.
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0. a(3*n + 1) = a(n).
a(n) = A000377(2*n + 1). a(3*n + 2) = 2 * A128582(n). a(12*n) = A113780(n).
a(n) = (-1)^n * A190615(n) = (-1)^floor( (n+1) / 2) * A128580(n). - Michael Somos, Nov 11 2015
a(2*n) = A261118(n). a(2*n + 1) = A261119(n). a(3*n) = A261115(n). - Michael Somos, Nov 11 2015
a(4*n) = A260308(n). a(4*n + 1) = A257920(n). a(4*n + 2) = 2 * A259895(n). - Michael Somos, Nov 11 2015
a(n) = - A261122(4*n + 2). - Michael Somos, Nov 11 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Dec 28 2023

A190615 Expansion of f(x^2) * f(x^3) / (chi(x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -2, 1, -2, 0, -2, 0, 0, 2, 0, 3, -1, 2, -2, 2, -4, 0, 0, 0, 0, 2, 0, 3, 0, 2, -4, 0, -2, 0, -2, 0, 0, 0, 0, 2, -3, 4, -2, 1, -2, 0, -2, 0, 0, 2, 0, 2, -2, 2, -2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 0, 4, -2, 0, -2, 0, -2, 0, 0, 0, 0, 4, -3, 2, -2, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, May 14 2011

Keywords

Comments

Number 63 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 - 2*x^7 + 2*x^10 + 3*x^12 - x^13 + ...
G.f. = q - q^3 + 2*q^5 - 2*q^7 + q^9 - 2*q^11 - 2*q^15 + 2*q^21 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ -x^3] / (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^12]), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^4 * eta(x^24 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(2*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%24 < 12, (e+1) * if( p%24 < 6, 1, (-1)^e), (1 + (-1)^e) / 2 )))};

Formula

Expansion of phi(-x^3) * psi(x^4) - x * phi(-x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q) * eta(q^4)^4 * eta(q^6)^4 * eta(q^24) / (eta(q^2)^3 * eta(q^3) * eta(q^8) * eta(q^12)^3) in powers of q.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 24), b(p^e) = (-1)^e * (e+1) if p == 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, 2, 0, -2, -1, -1, -1, -1, 0, 2, -1, -2, -1, 2, 0, -1, -1, -1, -1, -2, 0, 2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker( 6, k) * q^k / (1 + q^(2*k)) = Sum_{k>=0} a(k) * q^(2*k + 1).
G.f.: Product_{k>0} (1 + (-x)^k) * (1 - (-x^2)^k) * (1 - (-x^3)^k) * (1 + (-x^6)^k).
a(n) = (-1)^n * A129402(n). a(3*n + 1) = -a(n). a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0.
a(12*n) = A113700(n). a(12*n + 2) = 2 * A128583(n). a(12*n + 5) = -2 * A128591(n). - Michael Somos, Jun 09 2015
a(n) = (-1)^floor(n/2) * A128580(n) = (-1)^(n + floor(n/2)) * A134177(n). - Michael Somos, Jul 29 2015
a(3*n) = A260110(n). a(3*n + 2) = 2 * A260118(n). - Michael Somos, Jul 29 2015
a(4*n) = A260308(n). a(4*n + 1) = - A257920(n). a(4*n + 2) = 2 * A259895(n). a(4*n + 3) = -2 * A259896(n). - Michael Somos, Jul 29 2015
a(12*n + 3) = -2 * A260089(n). - Michael Somos, Jul 29 2015

A128591 Expansion of f(x, x^5) * f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 2, 2, 1, 1, 1, 1, 2, 3, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 1, 0, 4, 2, 0, 1, 1, 2, 1, 2, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 2, 2, 0, 1, 1, 3, 1, 1, 0, 1, 4, 1, 2, 1, 0, 4, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3
Offset: 0

Views

Author

Michael Somos, Mar 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^11 + 2*q^35 + q^59 + q^83 + q^107 + q^131 + 2*q^155 + q^179 + 2*q^203 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-1/2) QPochhammer[ -x, x^2] EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff(  eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A)  / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of chi(x) * psi(x) * psi(-x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Nov 15 2015
Expansion of q^(-11/24) * eta(q^2)^4 * eta(q^3) * eta(q^12) / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 1, -1, 2, -2, 2, -1, 1, -2, 2, -2, ...].
a(n) = A128582(4*n + 1).
2 * a(n) = A257920(3*n + 1). - a(n) = A260118(4*n + 1). 2 * a(n) = A257921(6*n + 2). -2 * a(n) = A128580(12*n + 5) = A190615(12*n + 5). - Michael Somos, Nov 15 2015

A257921 Expansion of f(x^2, -x^4) * f(-x, -x^5)^2 / f(-x^12, -x^12) in powers of x where f(, ) is Ramanujan's general theta functions.

Original entry on oeis.org

1, -2, 2, -2, 0, 0, 1, -2, 4, 0, 0, 0, 0, -4, 2, -2, 0, 0, 3, -2, 2, -2, 0, 0, 2, -2, 2, 0, 0, 0, 0, -2, 2, -2, 0, 0, 3, -2, 4, -2, 0, 0, 0, -6, 2, 0, 0, 0, 0, -2, 4, 0, 0, 0, 2, -2, 2, -4, 0, 0, 1, 0, 2, 0, 0, 0, 0, -2, 6, -2, 0, 0, 2, -4, 0, -2, 0, 0, 4, -4
Offset: 0

Views

Author

Michael Somos, Jul 12 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + x^6 - 2*x^7 + 4*x^8 - 4*x^13 + 2*x^14 + ...
G.f. = q^3 - 2*q^7 + 2*q^11 - 2*q^15 + q^27 - 2*q^31 + 4*q^35 - 4*q^55 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 3}, DivisorSum[ m, KroneckerSymbol[ 12, #] KroneckerSymbol[ -2, m/#] &]]];
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, Pi/4, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)])^2 / (2^(5/2) x^(3/4) EllipticTheta[ 2, Pi/4, x] EllipticTheta[ 4, 0, x^12]), {x, 0, n};
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 3; sumdiv(n, d, kronecker( 12, d) * kronecker( -2, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^6 + A)^4 * eta(x^24 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2 *eta(x^8 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of psi(-x)^2 * psi(x^3)^2 / (psi(-x^2) * phi(-x^12)) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-3/4) * eta(q)^2 * eta(q^4)^3 * eta(q^6)^4 * eta(q^24) / (eta(q^2)^3 * eta(q^3)^2 *eta(q^8) * eta(q^12)^2) in powers of q.
Euler transform of period 24 sequence [ -2, 1, 0, -2, -2, -1, -2, -1, 0, 1, -2, -2, -2, 1, 0, -1, -2, -1, -2, -2, 0, 1, -2, -2, ...].
a(n) = b(4*n + 3) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1, 11 (mod 24), b(p^e) = (e+1) * (-1)^e if p == 5, 7 (mod 24), b(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
a(n) = (-1)^n * A261119(n) = A134177(2*n + 1) = - A128580(2*n + 1) = - A115660(4*n+3).
a(6*n + 4) = a(6*n + 5) = 0.
a(2*n) = A257920(n). a(2*n + 1) = -2 * A259896(n). a(3*n) = A259668(n). a(6*n + 2) = 2 * A128591(n).

A261119 Expansion of f(x^2, -x^4) * f(x, x^5)^2 / f(-x^12, -x^12) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 2, 2, 0, 0, 1, 2, 4, 0, 0, 0, 0, 4, 2, 2, 0, 0, 3, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 3, 2, 4, 2, 0, 0, 0, 6, 2, 0, 0, 0, 0, 2, 4, 0, 0, 0, 2, 2, 2, 4, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 6, 2, 0, 0, 2, 4, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 4, 2
Offset: 0

Views

Author

Michael Somos, Aug 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + x^6 + 2*x^7 + 4*x^8 + 4*x^13 + 2*x^14 + ...
G.f. = q^3 + 2*q^7 + 2*q^11 + 2*q^15 + q^27 + 2*q^31 + 4*q^35 + 4*q^55 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 3}, (-1)^n DivisorSum[ m, KroneckerSymbol[ 12, #] KroneckerSymbol[ -2, m/#] &]]]; (* Michael Somos, Dec 22 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^24 + A) / (eta(x + A)^2 * eta(x^6 + A)^2 * eta(x^8 + A)), n))};
    
  • PARI
    a(n) = my(m = 4*n+3); (-1)^n*sumdiv(m, d, kronecker(12, d) * kronecker(-2, m/d)); \\ Michel Marcus, Dec 13 2017

Formula

Expansion of f(x^2, x^6) * f(x, x^5)^2 / f(x^4, x^8) in powers of x where f(,) is Ramanujan'sgeneral theta function.
Expansion of q^(-3/4) * eta(q^2)^3 * eta(q^3)^2 * eta(q^4) * eta(q^24) / (eta(q)^2 * eta(q^6)^2 * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ 2, -1, 0, -2, 2, -1, 2, -1, 0, -1, 2, -2, 2, -1, 0, -1, 2, -1, 2, -2, 0, -1, 2, -2, ...].
a(n) = (-1)^n * A257921(n) = A129402(2*n + 1) = A261118(3*n + 2) = A192013(4*n + 3) = A000377(4*n + 3).
a(2*n) = A257920(n). a(2*n + 1) = 2 * A259896(n). a(3*n) = A261118(n).
Showing 1-5 of 5 results.