cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257972 Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n - log(n)).

Original entry on oeis.org

5, 4, 2, 6, 6, 6, 7, 3, 2, 5, 7, 0, 2, 8, 2, 7, 5, 4, 2, 8, 8, 8, 5, 0, 7, 4, 7, 6, 3, 9, 6, 2, 4, 7, 4, 8, 7, 9, 1, 4, 2, 0, 3, 6, 3, 7, 6, 3, 0, 9, 2, 7, 2, 0, 0, 9, 5, 0, 7, 8, 6, 6, 0, 1, 3, 8, 1, 0, 1, 1, 7, 9, 9, 6, 4, 3, 2, 3, 3, 3, 6, 7, 3, 6, 3, 9, 8, 3, 4, 5, 7, 0, 2, 2, 3, 6, 5, 4, 2, 0, 4, 8, 2, 8, 6, 3, 8, 5, 5
Offset: 0

Views

Author

Keywords

Comments

This alternating series converges quite slowly, but can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy.

Examples

			0.542666732570282754288850747639624748791420363763092...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^(n-1)/(n-log(n)), n = 1..infinity), 120);
    evalf(1/2+Int((x-arctan(x))/(sinh(Pi*x)*((1-(1/2)*log(1+x^2))^2+(x-arctan(x))^2)), x = 0..infinity), 120);
  • Mathematica
    N[NSum[(-1)^(n-1)/(n-Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200],119]
    N[1/2 + NIntegrate[(x-ArcTan[x])/(Sinh[Pi*x]*((1-1/2*Log[1+x^2])^2 + (x-ArcTan[x])^2)), {x, 0, 1, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200],119] (* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. *)
  • PARI
    default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n-log(n)))
    
  • PARI
    allocatemem(50000000);
    default(realprecision, 1200); 1/2 + intnum(x=0,1, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=1,3, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=3,1000, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) /* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. */
    
  • Sage
    from mpmath import mp, nsum, inf
    mp.dps = 110; mp.pretty = True
    nsum(lambda n: (-1)^(n-1)/(n-log(n)), [1, inf], method='alternating') # Peter Luschny, May 17 2015

Formula

Equals 1/2 + integral_{x=0..infinity} (x-arctan(x))/(sinh(Pi*x)*((1-1/2*log(1+x^2))^2 + (x-arctan(x))^2)).