cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A257989 The crank of the partition having Heinz number n.

Original entry on oeis.org

-1, 2, -2, 3, 0, 4, -3, 2, 0, 5, -2, 6, 0, 3, -4, 7, 1, 8, -1, 4, 0, 9, -3, 3, 0, 2, -1, 10, 1, 11, -5, 5, 0, 4, -2, 12, 0, 6, -3, 13, 1, 14, -1, 3, 0, 15, -4, 4, 1, 7, -1, 16, 2, 5, -2, 8, 0, 17, -1, 18, 0, 4, -6, 6, 1, 19, -1, 9, 1, 20, -3, 21, 0, 3, -1, 5, 1, 22, -4, 2, 0, 23, -1, 7, 0, 10, -2, 24, 2, 6, -1
Offset: 2

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's).
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n, the subprogram b yields the number of 1's in the partition with Heinz number n and the subprogram c yields the number of parts that are larger than the number of 1's in the partition with the Heinz number n.

Examples

			a(12) = - 2 because the partition with Heinz number 12 = 2*2*3 is [1,1,2], the number of parts larger than the number of 1's is 0 and the number of 1's is 2; 0 - 2 = -2.
a(945) = 4 because the partition with Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] which has no part 1; the largest part is 4.
From _Gus Wiseman_, Apr 05 2021: (Start)
The partitions (center) with each Heinz number (left), and the corresponding terms (right):
   2:    (1)    -> -1
   3:    (2)    ->  2
   4:   (1,1)   -> -2
   5:    (3)    ->  3
   6:   (2,1)   ->  0
   7:    (4)    ->  4
   8:  (1,1,1)  -> -3
   9:   (2,2)   ->  2
  10:   (3,1)   ->  0
  11:    (5)    ->  5
  12:  (2,1,1)  -> -2
  13:    (6)    ->  6
  14:   (4,1)   ->  0
  15:   (3,2)   ->  3
  16: (1,1,1,1) -> -4
(End)
		

Crossrefs

Indices of zeros are A342192.
A001522 counts partitions of crank 0.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, b, c: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do; [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: c := proc (n) local b, B, ct, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for i to bigomega(n) do if b(n) < B(n)[i] then ct := ct+1 else  end if end do: ct end proc: if b(n) = 0 then max(B(n)) else c(n)-b(n) end if end proc: seq(a(n), n = 2 .. 150);
  • Mathematica
    B[n_] := Module[{nn, j, m}, nn =  FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
    b[n_] := b[n] = If[OddQ[n], 0, 1 + b[n/2]];
    c[n_] := Module[{ct, i}, ct = 0; For[i = 1, i <= PrimeOmega[n], i++, If[ b[n] < B[n][[i]], ct++]]; ct];
    a[n_] := If[b[n] == 0, Max[B[n]], c[n] - b[n]];
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Apr 25 2017, after Emeric Deutsch *)
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Table[ck[primeMS[n]],{n,2,30}] (* Gus Wiseman, Apr 05 2021 *)
Showing 1-1 of 1 results.