A257990 The side-length of the Durfee square of the partition having Heinz number n.
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1
Offset: 1
Keywords
Examples
a(9)=2; indeed, 9 = 3*3 is the Heinz number of the partition [2,2] and, clearly its Durfee square has side-length =2.
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
- G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
- M. Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Findstat, St000183: The side length of the Durfee square of an integer partition
Crossrefs
Programs
-
Maple
with(numtheory): a := proc (p) local B, S, i: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: S := {}: for i to nops(B(p)) do if i <= B(p)[nops(B(p))+1-i] then S := `union`(S, {i}) else end if end do: max(S) end proc: seq(a(n), n = 2 .. 146); # second Maple program: a:= proc(n) local l, t; l:= sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`); for t from nops(l) to 1 by -1 do if l[t]>=t then break fi od; t end: seq(a(n), n=1..120); # Alois P. Heinz, May 10 2016
-
Mathematica
a[n_] := a[n] = Module[{l, t}, l = Reverse[Sort[Flatten[Table[PrimePi[ f[[1]] ], {f, FactorInteger[n]}, {f[[2]]}]]]]; For[t = Length[l], t >= 1, t--, If[l[[t]] >= t, Break[]]]; t]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Feb 17 2017, after Alois P. Heinz *)
Formula
For a partition (p_1 >= p_2 >= ... > = p_r) the side-length of its Durfee square is the largest i such that p_i >=i.
Extensions
a(1)=0 prepended by Alois P. Heinz, May 10 2016
Comments