cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 62 results. Next

A006918 a(n) = binomial(n+3, 3)/4 for odd n, n*(n+2)*(n+4)/24 for even n.

Original entry on oeis.org

0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, 91, 112, 140, 168, 204, 240, 285, 330, 385, 440, 506, 572, 650, 728, 819, 910, 1015, 1120, 1240, 1360, 1496, 1632, 1785, 1938, 2109, 2280, 2470, 2660, 2870, 3080, 3311, 3542, 3795, 4048, 4324, 4600, 4900, 5200, 5525, 5850, 6201, 6552, 6930
Offset: 0

Views

Author

Keywords

Comments

Maximal number of inconsistent triples in a tournament on n+2 nodes [Kac]. - corrected by Leen Droogendijk, Nov 10 2014
a(n-4) is the number of aperiodic necklaces (Lyndon words) with 4 black beads and n-4 white beads.
a(n-3) is the maximum number of squares that can be formed from n lines, for n>=3. - Erich Friedman; corrected by Leen Droogendijk, Nov 10 2014
Number of trees with diameter 4 where at most 2 vertices 1 away from the graph center have degree > 2. - Jon Perry, Jul 11 2003
a(n+1) is the number of partitions of n into parts of two kinds, with at most two parts of each kind. Also a(n-3) is the number of partitions of n with Durfee square of size 2. - Franklin T. Adams-Watters, Jan 27 2006
Factoring the g.f. as x/(1-x)^2 times 1/(1-x^2)^2 we find that the sequence equals (1, 2, 3, 4, ...) convolved with (1, 0, 2, 0, 3, 0, 4, ...), A000027 convolved with its aerated variant. - Gary W. Adamson, May 01 2009
Starting with "1" = triangle A171238 * [1,2,3,...]. - Gary W. Adamson, Dec 05 2009
The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of this sequence, e.g., Kn22(n) = a(n+1) + a(n) + 2*a(n-1) + a(n-2) and Fi2(n) = a(n) + 4*a(n-1) + a(n-2). - Johannes W. Meijer, May 20 2011
For n>3, a(n-4) is the number of (w,x,y,z) having all terms in {1,...,n} and w+x+y+z=|x-y|+|y-z|. - Clark Kimberling, May 23 2012
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w+x+y < |w-x|+|x-y|. - Clark Kimberling, Jun 13 2012
For n>0 number of inequivalent (n-1) X 2 binary matrices, where equivalence means permutations of rows or columns or the symbol set. - Alois P. Heinz, Aug 17 2014
Number of partitions p of n+5 such that p[3] = 2. Examples: a(1)=1 because we have (2,2,2); a(2)=2 because we have (2,2,2,1) and (3,2,2); a(3)=5 because we have (2,2,2,1,1), (2,2,2,2), (3,2,2,1), (3,3,2), and (4,2,2). See the R. P. Stanley reference. - Emeric Deutsch, Oct 28 2014
Sum over each antidiagonal of A243866. - Christopher Hunt Gribble, Apr 02 2015
Number of nonisomorphic outer planar graphs of order n>=3, size n+2, and maximum degree 3. - Christian Barrientos and Sarah Minion, Feb 27 2018
a(n) is the number of 2413-avoiding odd Grassmannian permutations of size n+1. - Juan B. Gil, Mar 09 2023

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 14*x^5 + 20*x^6 + 30*x^7 + 40*x^8 + 55*x^9 + ...
From _Gus Wiseman_, Apr 06 2019: (Start)
The a(4 - 3) = 1 through a(8 - 3) = 14 integer partitions with Durfee square of length 2 are the following (see Franklin T. Adams-Watters's second comment). The Heinz numbers of these partitions are given by A325164.
  (22)  (32)   (33)    (43)     (44)
        (221)  (42)    (52)     (53)
               (222)   (322)    (62)
               (321)   (331)    (332)
               (2211)  (421)    (422)
                       (2221)   (431)
                       (3211)   (521)
                       (22111)  (2222)
                                (3221)
                                (3311)
                                (4211)
                                (22211)
                                (32111)
                                (221111)
The a(0 + 1) = 1 through a(4 + 1) = 14 integer partitions of n into parts of two kinds with at most two parts of each kind are the following (see Franklin T. Adams-Watters's first comment).
  ()()  ()(1)  ()(2)   ()(3)    ()(4)
        (1)()  (2)()   (3)()    (4)()
               ()(11)  (1)(2)   (1)(3)
               (1)(1)  ()(21)   ()(22)
               (11)()  (2)(1)   (2)(2)
                       (21)()   (22)()
                       (1)(11)  ()(31)
                       (11)(1)  (3)(1)
                                (31)()
                                (11)(2)
                                (1)(21)
                                (2)(11)
                                (21)(1)
                                (11)(11)
The a(6 - 5) = 1 through a(10 - 5) = 14 integer partitions whose third part is 2 are the following (see Emeric Deutsch's comment). The Heinz numbers of these partitions are given by A307373.
  (222)  (322)   (332)    (432)     (442)
         (2221)  (422)    (522)     (532)
                 (2222)   (3222)    (622)
                 (3221)   (3321)    (3322)
                 (22211)  (4221)    (4222)
                          (22221)   (4321)
                          (32211)   (5221)
                          (222111)  (22222)
                                    (32221)
                                    (33211)
                                    (42211)
                                    (222211)
                                    (322111)
                                    (2221111)
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.
  • M. Kac, An example of "counting without counting", Philips Res. Reports, 30 (1975), 20*-22* [Special issue in honour of C. J. Bouwkamp].
  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, 2004.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186, Theorem 6.11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2nd ed., 2012, Exercise 4.16, pp. 530, 552.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 33.

Crossrefs

Cf. A000031, A001037, A028723, A051168. a(n) = T(n,4), array T as in A051168.
Cf. A000094.
Cf. A171238. - Gary W. Adamson, Dec 05 2009
Row sums of A173997. - Gary W. Adamson, Mar 05 2010
Column k=2 of A242093. Column k=2 of A115720 and A115994.

Programs

  • Haskell
    a006918 n = a006918_list !! n
    a006918_list = scanl (+) 0 a008805_list
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [Floor(Binomial(n+4, 4)/(n+4))-Floor((n+2)/8)*(1+(-1)^n)/2: n in [0..60]]; // Vincenzo Librandi, Nov 10 2014
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=r),U=Sequence(Z,card>=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=11..58) ; # Zerinvary Lajos, Mar 09 2007
    A006918 := proc(n)
        if type(n,'even') then
            n*(n+2)*(n+4)/24 ;
        else
            binomial(n+3,3)/4 ;
        fi ;
    end proc: # R. J. Mathar, May 17 2016
  • Mathematica
    f[n_]:=If[EvenQ[n],(n(n+2)(n+4))/24,Binomial[n+3,3]/4]; Join[{0},Array[f,60]]  (* Harvey P. Dale, Apr 20 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==2&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    { parttrees(n)=local(pt,k,nk); if (n%2==0, pt=(n/2+1)^2, pt=ceil(n/2)*(ceil(n/2)+1)); pt+=floor(n/2); for (x=1,floor(n/2),pt+=floor(x/2)+floor((n-x)/2)); if (n%2==0 && n>2, pt-=floor(n/4)); k=1; while (3*k<=n, for (x=k,floor((n-k)/2), pt+=floor(k/2); if (x!=k, pt+=floor(x/2)); if ((n-x-k)!=k && (n-x-k)!=x, pt+=floor((n-x-k)/2))); k++); pt }
    
  • PARI
    {a(n) = n += 2; (n^3 - n * (2-n%2)^2) / 24}; /* Michael Somos, Aug 15 2009 */
    

Formula

G.f.: x/((1-x)^2*(1-x^2)^2) = x/((1+x)^2*(1-x)^4).
0, 0, 0, 1, 2, 5, 8, 14, ... has a(n) = (Sum_{k=0..n} floor(k(n-k)/2))/2. - Paul Barry, Sep 14 2003
0, 0, 0, 0, 0, 1, 2, 5, 8, 14, 20, 30, 40, 55, ... has a(n) = binomial(floor(1/2 n), 3) + binomial(floor(1/2 n + 1/2), 3) [Eke]. - N. J. A. Sloane, May 12 2012
a(0)=0, a(1)=1, a(n) = (2/(n-1))*a(n-1) + ((n+3)/(n-1))*a(n-2). - Benoit Cloitre, Jun 28 2004
a(n) = floor(binomial(n+4, 4)/(n+4)) - floor((n+2)/8)(1+(-1)^n)/2. - Paul Barry, Jan 01 2005
a(n+1) = a(n) + binomial(floor(n/2)+2,2), i.e., first differences are A008805. Convolution of A008619 with itself, then shifted right (or A004526 with itself, shifted left by 3). - Franklin T. Adams-Watters, Jan 27 2006
a(n+1) = (A027656(n) + A003451(n+5))/2 with a(1)=0. - Yosu Yurramendi, Sep 12 2008
Linear recurrence: a(n) = 2a(n-1) + a(n-2) - 4a(n-3) + a(n-4) + 2a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
Euler transform of length 2 sequence [2, 2]. - Michael Somos, Aug 15 2009
a(n) = -a(-4-n) for all n in Z.
a(n+1) + a(n) = A002623(n). - Johannes W. Meijer, May 20 2011
a(n) = (n+2)*(2*n*(n+4)-3*(-1)^n+3)/48. - Bruno Berselli, May 21 2011
a(2n) = A007290(n+2). - Jon Perry, Nov 10 2014
G.f.: (1/(1-x)^4-1/(1-x^2)^2)/4. - Herbert Kociemba, Oct 23 2016
E.g.f.: (x*(18 + 9*x + x^2)*cosh(x) + (6 + 15*x + 9*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, Dec 07 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 75/4 - 24*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 69/4 - 24*log(2). (End)

A252464 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A064989(2n+1)); also binary width of terms of A156552 and A243071.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 4, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 5, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 5, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

a(n) tells how many iterations of A252463 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A005940 and A163511.
Similarly for A253553 in trees A253563 and A253565. - Antti Karttunen, Apr 14 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the inner lining of the integer partition with Heinz number n, which is also the size of the largest hook of the same partition. For example, the partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
and largest hook
  o o o o o o
  o
  o
both of which have size 8, so a(715) = 8.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]]-1,{n,100}] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = (bigomega(n) + A061395(n) - 1); \\ Antti Karttunen, Apr 14 2019
    
  • Python
    from sympy import primepi, primeomega, primefactors
    def A252464(n): return primeomega(n)+primepi(max(primefactors(n)))-1 if n>1 else 0 # Chai Wah Wu, Jul 17 2023

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A252463(n)).
a(n) = A029837(1+A243071(n)). [a(n) = binary width of terms of A243071.]
a(n) = A029837(A005941(n)) = A029837(1+A156552(n)). [Also binary width of terms of A156552.]
Other identities. For all n >= 1:
a(A000040(n)) = n.
a(A001248(n)) = n+1.
a(A030078(n)) = n+2.
And in general, a(prime(n)^k) = n+k-1.
a(A000079(n)) = n. [I.e., a(2^n) = n.]
For all n >= 2:
a(n) = A001222(n) + A061395(n) - 1 = A001222(n) + A252735(n) = A061395(n) + A252736(n) = 1 + A252735(n) + A252736(n).
a(n) = A325134(n) - 1. - Gus Wiseman, Apr 02 2019
From Antti Karttunen, Apr 14 2019: (Start)
a(1) = 0; for n > 1: a(n) = 1 + a(A253553(n)).
a(n) = A001221(n) + A297167(n) = A297113(n) + A297155(n).
(End).

A115720 Triangle T(n,k) is the number of partitions of n with Durfee square k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 0, 5, 2, 0, 6, 5, 0, 7, 8, 0, 8, 14, 0, 9, 20, 1, 0, 10, 30, 2, 0, 11, 40, 5, 0, 12, 55, 10, 0, 13, 70, 18, 0, 14, 91, 30, 0, 15, 112, 49, 0, 16, 140, 74, 1, 0, 17, 168, 110, 2, 0, 18, 204, 158, 5, 0, 19, 240, 221, 10, 0, 20, 285, 302, 20, 0, 21, 330, 407
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.

Examples

			Triangle starts:
  1;
  0,  1;
  0,  2;
  0,  3;
  0,  4,  1;
  0,  5,  2;
  0,  6,  5;
  0,  7,  8;
  0,  8, 14;
  0,  9, 20,  1;
  0, 10, 30,  2;
From _Gus Wiseman_, Apr 12 2019: (Start)
Row n = 9 counts the following partitions:
  (9)          (54)       (333)
  (81)         (63)
  (711)        (72)
  (6111)       (432)
  (51111)      (441)
  (411111)     (522)
  (3111111)    (531)
  (21111111)   (621)
  (111111111)  (3222)
               (3321)
               (4221)
               (4311)
               (5211)
               (22221)
               (32211)
               (33111)
               (42111)
               (222111)
               (321111)
               (2211111)
(End)
		

Crossrefs

For a version without zeros see A115994. Row lengths are A003059. Row sums are A000041. Column k = 2 is A006918. Column k = 3 is A117485.
Related triangles are A096771, A325188, A325189, A325192, with Heinz-encoded versions A263297, A325169, A065770, A325178.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
    seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==k&]],{n,0,10},{k,0,Sqrt[n]}] (* Gus Wiseman, Apr 12 2019 *)

Formula

T(n,k) = Sum_{i=0..n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.

A065770 Number of prime cascades to reach 1, where a prime cascade (A065769) is multiplicative with a(p(m)^k) = p(m-1) * p(m)^(k-1).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 3, 4, 5, 9, 4, 4, 6, 4, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 4, 13, 4, 14, 5, 4, 9, 15, 5, 5, 4, 7, 6, 16, 4, 5, 4, 8, 10, 17, 4, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 5, 21, 12, 4, 8, 5, 6, 22, 5, 5, 13, 23, 4, 7, 14, 10, 5, 24, 4, 6, 9, 11
Offset: 1

Views

Author

Henry Bottomley, Nov 19 2001

Keywords

Comments

It seems that a(n) <= A297113(n) for all n. Of the first 10000 positive natural numbers, 6454 are such that a(n) = A297113(n). - Antti Karttunen, Dec 31 2017
Also one plus the maximum number of unit steps East or South in the Young diagram of the integer partition with Heinz number n > 1, starting from the upper-left square and ending in a boundary square in the lower-right quadrant. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 06 2019

Examples

			a(50) = 4 since the cascade goes from 50 = 2^1 * 5^2 to 15 = 3^1 * 5^1 to 6 = 2^1 * 3^1 to 2 = 2^1 to 1.
From _Gus Wiseman_, Apr 06 2019: (Start)
The partition with Heinz number 7865 is (6,5,5,3), with diagram
  o o o o o o
  o o o o o
  o o o o o
  o o o
which has longest path from (1,1) to (5,3) of length 6, so a(7865) = 7.
(End)
		

Crossrefs

Cf. A065769.
Differs from A297113 for the first time at n=20, where a(20) = 3, while A297113(20) = 4.

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Total/@Position[PadRight[ConstantArray[1,#]&/@Sort[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]],Greater]],1]-1],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
  • Scheme
    (definec (A065770 n) (if (= 1 n) 0 (+ 1 (A065770 (A065769 n))))) ;; Antti Karttunen, Dec 31 2017

Formula

Inverse of primes, powers of 2 and primorials in sense that a(A000040(n))=n; a(A000079(n))=n; a(A002110(n))=n. If n>0: a(3^n)=n+1; a(2^n*3^k)=n+k; a(p(k)^n)=n+k-1; a(n!)=A022559(n).
a(1) = 0; and for n > 1, a(n) = 1 + A065769(n). - Antti Karttunen, Dec 31 2017

A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500, 94163002754652, 369507926510352
Offset: 1

Views

Author

Barry E. Williams, Dec 19 1999

Keywords

Comments

Number of partitions with Ferrers plots that fit inside an n X n box, but not in an n-1 X n-1 box. - Wouter Meeussen, Dec 10 2001
From Benoit Cloitre, Jan 29 2002: (Start)
Let m(1,j)=j, m(i,1)=i and m(i,j) = m(i-1,j) + m(i,j-1); then a(n) = m(n,n):
1 2 3 4 ...
2 4 7 11 ...
3 7 14 25 ...
4 11 25 50 ... (End)
This sequence also gives the number of clusters and non-crossing partitions of type D_n. - F. Chapoton, Jan 31 2005
If Y is a 2-subset of a 2n-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Prefaced with a 1: (1, 1, 4, 14, 50, ...) and convolved with the Catalan sequence = A097613: (1, 2, 7, 25, 91, ...). - Gary W. Adamson, May 15 2009
Total number of up steps before the second return in all Dyck n-paths. - David Scambler, Aug 21 2012
Conjecture: a(n) mod n^2 = n+2 iff n is an odd prime. - Gary Detlefs, Feb 19 2013
First differences of A000984 and A030662. - J. M. Bergot, Jun 22 2013
From R. J. Mathar, Jun 30 2013: (Start)
Equivalent to the Meeussen comment and the Bergot comment: The array view of A007318 is
1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6,
1, 3, 6, 10, 15, 21,
1, 4, 10, 20, 35, 56,
1, 5, 15, 35, 70, 126,
1, 6, 21, 56, 126, 252,
and a(n) are the hook sums Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End)
From Gus Wiseman, Apr 12 2019: (Start)
Equivalent to Wouter Meeussen's comment, a(n) is the number of integer partitions (of any positive integer) such that the maximum of the length and the largest part is n. For example, the a(1) = 1 through a(3) = 14 partitions are:
(1) (2) (3)
(11) (31)
(21) (32)
(22) (33)
(111)
(211)
(221)
(222)
(311)
(321)
(322)
(331)
(332)
(333)
(End)
Coxeter-Catalan numbers for Coxeter groups of type D_n [Armstrong]. - N. J. A. Sloane, Mar 09 2022
a(n+1) is the number of ways that a best of n pairs contest with early termination can go. For example, the first stage of an association football (soccer) penalty-kick shoot out has n=5 pairs of shots and there are a(6)=672 distinct ways it can go. For n=2 pairs, writing G for goal and M for miss, and listing the up-to-four shots in chronological order with teams alternating shots, the n(3)=14 possibilities are MMMM, MMMG, MMGM, MMGG, MGM, MGGM, MGGG, GMMM, GMMG, GMG, GGMM, GGMG, GGGM, and GGGG. Not all four shots are taken in two cases because it becomes impossible for one team to overcome the lead of the other team. - Lee A. Newberg, Jul 20 2024

Examples

			Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ...
		

References

  • Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8.

Crossrefs

Left-central elements of the (1, 2)-Pascal triangle A029635.
Column sums of A096771.
Cf. A000108, A024482 (diagonal from 2), A076540 (diagonal from 3), A000124 (row from 2), A004006 (row from 3), A006522 (row from 4).
Cf. A128064; first differences of A000984.
Cf. A097613.

Programs

  • Haskell
    a051924 n = a051924_list !! (n-1)
    a051924_list = zipWith (-) (tail a000984_list) a000984_list
    -- Reinhard Zumkeller, May 25 2013
    
  • Magma
    [Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    C:= n-> binomial(2*n, n)/(n+1): seq((n+1)*C(n)-n*C(n-1), n=1..25); # Emeric Deutsch, Jan 08 2008
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007
    a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[Binomial[2n,n]-Binomial[2n-2,n-1],{n,30}] (* Harvey P. Dale, Jan 15 2012 *)
  • PARI
    a(n)=binomial(2*n,n)-binomial(2*n-2,n-1) \\ Charles R Greathouse IV, Jun 25 2013
    
  • PARI
    {a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • PARI
    {a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • Sage
    a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n))
    [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015
    

Formula

G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n+1) = binomial(2*n, n) + 2*Sum_{i=0..n-1} binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004
a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009
Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005
a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006
The sequence 1,1,4,... has a(n) = C(2*n,n)-C(2*(n-1),n-1) = 0^n+Sum_{k=0..n} C(n-1,k-1)*A002426(k), and g.f. given by (1-x)/(1-2*x-2*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
a(n) = (3*n-2)*(2*n-2)!/(n*(n-1)!^2) = A001700(n) + A001791(n-1). - David Scambler, Aug 21 2012
D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014
a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016
a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019
Sum_{n>=1} a(n)/8^n = 7/(4*sqrt(2)) - 1. - Amiram Eldar, May 06 2023

Extensions

Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar

A114088 Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)

Examples

			T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  2, 1, 1, 1;
  2, 2, 1, 1, 1;
  3, 3, 2, 1, 1, 1;
  3, 4, 3, 2, 1, 1, 1;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
  • Mathematica
    subdiags[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],subdiags[#]==k&]],{n,1,15},{k,0,n-1}] (* Gus Wiseman, May 21 2022 *)
  • PARI
    T_qt(max_row) = {my(N=max_row+1, q='q+O('q^N), h = sum(k=1,N, q^(k^2)/prod(j=1,k, (1-q^j)*(1-t*q^j))) ); for(i=1, N-1, print(Vecrev(polcoef(h, i))))}
    T_qt(10) \\ John Tyler Rascoe, Oct 24 2024

Formula

G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum_{k=0..n-1} k*T(n,k) = A114089(n).

A325169 Origin-to-boundary graph-distance of the Young diagram of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps left or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the minimum triangular partition contained inside the diagram.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[otb[Reverse[primeMS[n]]],{n,100}]

Formula

A257990(n) <= a(n) <= 2 * A257990(n).

A352822 Number of fixed points y(i) = i, where y is the weakly increasing sequence of prime indices of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6500 are {1,1,3,3,3,6} with fixed points at positions {1,3,6}, so a(6500) = 3.
		

Crossrefs

* = unproved
Positions of first appearances are A002110.
The triangle version is A238352.
Positions of 0's are A352830, counted by A238394.
Positions of 1's are A352831, counted by A352832.
A version for compositions is A352512, complement A352513, triangle A238349.
The complement is A352823.
The reverse version is A352824, complement A352825.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A115720 and A115994 count partitions by their Durfee square.
A238395 counts reversed partitions with a fixed point, ranked by A352872.

Programs

  • Maple
    f:= proc(n) local F,J,t;
      F:= sort(ifactors(n)[2],(s,t) -> s[1] numtheory:-pi(t[1])$t[2], F);
      nops(select(t -> J[t]=t, [$1..nops(J)]));
    end proc:
    map(f, [$1..200]); # Robert Israel, Apr 11 2023
  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{n,100}]
  • PARI
    A352822(n) = { my(f=factor(n),i=0,c=0); for(k=1,#f~,while(f[k,2], f[k,2]--; i++; c += (i==primepi(f[k,1])))); (c); }; \\ Antti Karttunen, Apr 11 2022

Formula

a(n) = A001222(n) - A352823(n). - Antti Karttunen, Apr 11 2022

Extensions

Data section extended up to 105 terms by Antti Karttunen, Apr 11 2022

A352827 Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists.

Original entry on oeis.org

2, 4, 8, 9, 15, 16, 18, 21, 27, 30, 32, 33, 36, 39, 42, 45, 51, 54, 57, 60, 63, 64, 66, 69, 72, 78, 81, 84, 87, 90, 93, 99, 102, 108, 111, 114, 117, 120, 123, 125, 126, 128, 129, 132, 135, 138, 141, 144, 153, 156, 159, 162, 168, 171, 174, 175, 177, 180, 183
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: (1)
    4: (1,1)
    8: (1,1,1)
    9: (2,2)
   15: (3,2)
   16: (1,1,1,1)
   18: (2,2,1)
   21: (4,2)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   33: (5,2)
   36: (2,2,1,1)
   39: (6,2)
   42: (4,2,1)
   45: (3,2,2)
   51: (7,2)
   54: (2,2,2,1)
For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence.
		

Crossrefs

* = unproved
*These partitions are counted by A001522, strict A352829.
*The complement is A352826, counted by A064428.
The complement reverse version is A352830, counted by A238394.
The reverse version is A352872, counted by A238395
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, unfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352828 counts strict partitions without a fixed point.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==1&]

A325134 a(1) = 1; a(n) = number of prime factors of n counted with multiplicity plus the largest prime index of n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 7, 6, 5, 5, 8, 5, 9, 6, 6, 7, 10, 6, 5, 8, 5, 7, 11, 6, 12, 6, 7, 9, 6, 6, 13, 10, 8, 7, 14, 7, 15, 8, 6, 11, 16, 7, 6, 6, 9, 9, 17, 6, 7, 8, 10, 12, 18, 7, 19, 13, 7, 7, 8, 8, 20, 10, 11, 7, 21, 7, 22, 14, 6, 11, 7, 9, 23
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
Also one plus the size of the largest hook contained in the Young diagram of the integer partition with Heinz number n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=1, 1, bigomega(n)+pi(max(factorset(n)[]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 03 2019
  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]],{n,100}]

Formula

a(n) = A001222(n) + A061395(n).
a(n) = A252464(n) + 1.
Showing 1-10 of 62 results. Next