cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A257991 Number of odd parts in the partition having Heinz number n.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 1, 1, 4, 1, 1, 0, 3, 0, 2, 1, 3, 2, 1, 0, 2, 0, 2, 1, 5, 1, 2, 1, 2, 0, 1, 0, 4, 1, 1, 0, 3, 1, 2, 1, 4, 0, 3, 1, 2, 0, 1, 2, 3, 0, 1, 1, 3, 0, 2, 0, 6, 1, 2, 1, 3, 1, 2, 0, 3, 1, 1, 2, 2, 1, 1, 0, 5, 0, 2, 1, 2, 2, 1, 0, 4
Offset: 1

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.

Examples

			a(12) = 2 because the partition having Heinz number 12 = 2*2*3 is [1,1,2], having 2 odd parts.
		

References

  • George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
  • Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: seq(a(n), n = 1 .. 135);
    # second Maple program:
    a:= n-> add(`if`(numtheory[pi](i[1])::odd, i[2], 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 09 2016
  • Mathematica
    a[n_] := Sum[If[PrimePi[i[[1]]] // OddQ, i[[2]], 0], {i, FactorInteger[n]} ]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Dec 10 2016, after Alois P. Heinz *)

Formula

From Amiram Eldar, Jun 17 2024: (Start)
Totally additive with a(p) = 1 if primepi(p) is odd, and 0 otherwise.
a(n) = A257992(n) + A195017(n). (End)