A289190 Numbers k such that k^2 with last digit deleted is a prime.
5, 6, 14, 26, 44, 46, 56, 64, 74, 76, 86, 94, 106, 146, 154, 164, 206, 226, 236, 244, 254, 256, 274, 286, 296, 304, 314, 326, 344, 346, 364, 424, 436, 446, 454, 464, 506, 524, 536, 596, 614, 664, 674, 676, 686, 694, 706, 764, 776, 796, 826, 844, 854, 874, 944, 946
Offset: 1
Examples
14 is in the sequence because 14^2 = 196; deleting the last digit gives 19 which is prime. 26 is in the sequence because 26^2 = 676; deleting the last digit gives 67 which is prime.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..545
Programs
-
Magma
[n : n in [1 .. 2000] | IsPrime (Floor (n^2/10))];
-
Maple
select(n -> isprime(floor(n^2/10)),[$1..2000]);
-
Mathematica
fQ[n_] := PrimeQ@Quotient[n^2, 10]; Select[Range[1, 2000], fQ]
-
PARI
isok(n) = isprime(n^2\10); \\ Michel Marcus, Jul 02 2017