A258088 Numbers n such that n is the average of four consecutive primes n-5, n-1, n+1 and n+5.
12, 18, 42, 102, 108, 228, 312, 462, 858, 882, 1092, 1302, 1428, 1488, 1872, 1998, 2688, 3462, 4518, 4788, 5232, 5652, 6828, 7878, 8292, 10458, 13692, 13878, 15732, 16062, 16068, 16188, 17388, 19422, 19428, 20748, 21018, 21318, 22278, 23058
Offset: 1
Keywords
Examples
12 is the average of the four consecutive primes 7, 11, 13, 17. 18 is the average of the four consecutive primes 13, 17, 19, 23.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
a={};Do[If[Prime[x + 3] - Prime[x]==10, AppendTo[a, Prime[x]+ 5]], {x, 1, 4000}]; a (* Vincenzo Librandi, Jul 18 2015 *) Mean/@Select[Partition[Prime[Range[3000]],4,1],Differences[#]=={4,2,4}&] (* Harvey P. Dale, Sep 18 2018 *)
-
PARI
is(n)=isprime(n-5)&&isprime(n-1)&&isprime(n+1)&&isprime(n+5) \\ Charles R Greathouse IV, Aug 28 2015
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,50001,2): if isprime(i-1) and isprime(i+1): if prevprime(i-1) == i-5 and nextprime(i+1) == i+5: print (i,end=', ')
Formula
a(n) = A052378(n) + 5. - Karl V. Keller, Jr., Jul 17 2015
Extensions
New name from Karl V. Keller, Jr., Jul 21 2015
Comments