A258117 The Heinz numbers in increasing order of the partitions into distinct even parts.
1, 3, 7, 13, 19, 21, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 193, 199, 203, 213, 223, 229, 237, 239, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317, 321, 337, 339, 349
Offset: 1
Keywords
Examples
213 is in the sequence because it is the Heinz number of the partition [2,20]; indeed, (2nd prime)*(20th prime) = 3*71 = 213.
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
- G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: DE := {}: for q to 350 do if `and`(nops(B(q)) = nops(convert(B(q), set)), map(type, convert(B(q), set), even) = {true}) then DE := `union`(DE, {q}) else end if end do: DE; # second Maple program: a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) do if not false in map(i-> i[2]=1 and numtheory [pi](i[1])::even, ifactors(k)[2]) then break fi od; k end: seq(a(n), n=1..100); # Alois P. Heinz, May 10 2016
-
Mathematica
a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], True, k++, If[AllTrue[FactorInteger[k], #[[2]] == 1 && EvenQ[PrimePi[#[[1]]]]&], Break[]]]; k]; Array[a, 100] (* Jean-François Alcover, Dec 12 2016 after Alois P. Heinz *)
Extensions
a(1)=1 inserted by Alois P. Heinz, May 10 2016
Comments