A258119 Triangle T(n,k) in which the n-th row lists in increasing order the Heinz numbers of all perfect partitions of n.
1, 2, 4, 6, 8, 16, 18, 20, 32, 64, 42, 54, 56, 128, 100, 256, 162, 176, 512, 1024, 234, 260, 294, 392, 416, 486, 500, 2048, 4096, 1088, 1458, 8192, 1936, 2500, 16384, 798, 1026, 1064, 2058, 2432, 2744, 4374, 32768, 65536, 2300, 3042, 3380, 5408, 5888, 12500, 13122, 131072
Offset: 0
Examples
54 = 2*3*3*3 is in the sequence because the partition [1,2,2,2] is perfect. 24 = 2*2*2*3 is not in the sequence because the partition [1,1,1,2] is not perfect (1+1+1=1+2; it is complete). Triangle T(n,k) begins: 1; 2; 4; 6, 8; 16; 18, 20, 32; 64; 42, 54, 56, 128; ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p 123.
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Programs
-
Maple
with(numtheory): T:= proc(m) local b, ll, p; if m=0 then return 1 fi; p:= proc(l) ll:=ll, 2^(l[1]-1)*mul(ithprime( mul(l[j], j=1..i-1))^(l[i]-1), i=2..nops(l)) end: b:= proc(n, l) `if`(n=1, p(l), seq(b(n/d, [l[], d]) , d=divisors(n) minus{1})) end: ll:= NULL; b(m+1, []): sort([ll])[] end: seq(T(n), n=0..20); # Alois P. Heinz, Jun 08 2015
-
Mathematica
T[0] = {1}; T[m_] := Module[{b, ll, p}, p[l_List] := (ll = Append[ll, 2^(l[[1]]-1)*Product[Prime[Product[l[[j]], {j, 1, i-1}]]^(l[[i]]-1), {i, 2, Length[l]}]]; 1); b[n_, l_List] := If[n == 1, p[l], Table[b[n/d, Append[l, d]], {d, Divisors[n] // Rest}]]; ll = {}; b[m+1, {}]; Sort[ll] ]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 28 2016, after Alois P. Heinz *)
Comments