cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325780 Heinz numbers of perfect integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 234, 256, 260, 294, 392, 416, 486, 500, 512, 798, 1024, 1026, 1064, 1088, 1458, 1936, 2048, 2058, 2300, 2432, 2500, 2744, 3042, 3380, 4096, 4374, 4698, 5104, 5408, 5888, 8192, 8658, 9620, 10878
Offset: 1

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The sum of prime indices of n is A056239(n). A number is in this sequence iff all of its divisors have distinct sums of prime indices, and these sums cover an initial interval of nonnegative integers. For example, the divisors of 260 are {1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260}, with respective sums of prime indices {0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11}, so 260 is in the sequence.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      6: {1,2}
      8: {1,1,1}
     16: {1,1,1,1}
     18: {1,2,2}
     20: {1,1,3}
     32: {1,1,1,1,1}
     42: {1,2,4}
     54: {1,2,2,2}
     56: {1,1,1,4}
     64: {1,1,1,1,1,1}
    100: {1,1,3,3}
    128: {1,1,1,1,1,1,1}
    162: {1,2,2,2,2}
    176: {1,1,1,1,5}
    234: {1,2,2,6}
    256: {1,1,1,1,1,1,1,1}
    260: {1,1,3,6}
		

Crossrefs

Equals the sorted concatenation of the triangle A258119.
A subsequence of A299702 and A325781.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],Sort[hwt/@Rest[Divisors[#]]]==Range[DivisorSigma[0,#]-1]&]

Formula

Intersection of A299702 (knapsack partitions) and A325781 (complete partitions).

A258118 Triangle T(n,k) in which the n-th row lists in increasing order the Heinz numbers of all complete partitions of n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 30, 36, 40, 48, 64, 42, 54, 56, 60, 72, 80, 96, 128, 84, 90, 100, 108, 112, 120, 144, 160, 192, 256, 126, 132, 140, 150, 162, 168, 176, 180, 200, 216, 224, 240, 288, 320, 384, 512, 198, 210, 220, 252, 264, 270, 280, 300, 324, 336, 352, 360, 400, 432, 448, 480, 576, 640, 768, 1024
Offset: 0

Views

Author

Emeric Deutsch, Jun 07 2015

Keywords

Comments

A partition of n is complete if every number from 1 to n can be represented as a sum of parts of the partition.
The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1,1,1,4] we get 2*2*2*7 = 56. It is in the sequence because the partition [1,1,1,4] is complete.
Except for a(0)=1, there are no odd numbers in the sequence. Indeed, a partition having an odd Heinz number does not have 1 as a part and, consequently, it cannot be complete.
Number of terms in row n is A126796(n). As a matter of fact, so far, the triangle has been constructed by selecting those A126796(n) entries from row n of A215366 which correspond to complete partitions. Last term in row n is 2^n.

Examples

			54 = 2*3*3*3 is in the sequence because the partition [1,2,2,2] is complete.
28 = 2*2*7 is not in the sequence because the partition [1,1,4] is not complete.
Triangle T(n,k) begins:
   1;
   2;
   4;
   6,  8;
  12, 16;
  18, 20,  24,  32;
  30, 36,  40,  48,  64;
  42, 54,  56,  60,  72,  80,  96, 128;
  84, 90, 100, 108, 112, 120, 144, 160, 192, 256;
  ...
		

Crossrefs

Column k=1 gives A259941.
Row sums give A360791.

Programs

  • Maple
    T:= proc(m) local b, ll, p;
          p:= proc(l) ll:=ll, (mul(ithprime(j), j=l)); 1 end:
          b:= proc(n, i, l) `if`(i<2, p([l[], 1$n]), `if`(n<2*i-1,
          b(n, iquo(n+1, 2), l), b(n, i-1, l)+b(n-i, i, [l[], i])))
          end: ll:= NULL; b(m, iquo(m+1, 2), []): sort([ll])[]
        end:
    seq(T(n), n=0..12);  # Alois P. Heinz, Jun 07 2015
  • Mathematica
    T[m_] := Module[{b, ll, p}, p[l_List] := (ll = Append[ll, Product[Prime[j], {j, l}]]; 1); b[n_, i_, l_List] := If[i<2, p[Join[l, Array[1&, n]]], If[n < 2*i-1, b[n, Quotient[n+1, 2], l], b[n, i-1, l] + b[n-i, i, Append[l, i] ]]]; ll = {}; b[m, Quotient[m+1, 2], {}]; Sort[ll]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 28 2016, after Alois P. Heinz *)

A259939 Smallest Product_{i:lambda} prime(i) for any perfect partition lambda of n.

Original entry on oeis.org

1, 2, 4, 6, 16, 18, 64, 42, 100, 162, 1024, 234, 4096, 1088, 1936, 798, 65536, 2300, 262144, 4698, 18496, 31744, 4194304, 8658, 234256, 167936, 52900, 46784, 268435456, 90992, 1073741824, 42294, 984064, 3866624, 5345344, 140300, 68719476736, 17563648, 6885376
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2015

Keywords

Comments

A perfect partition of n contains a unique partition for any k in {0,...,n}. See also A002033.

Examples

			For n=7 there are 4 perfect partitions: [4,1,1,1], [4,2,1], [2,2,2,1] and [1,1,1,1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 56, 42, 54, 128, respectively.  The smallest value is a(7) = 42.
		

Crossrefs

Column k=1 of A258119.

Programs

  • Maple
    b:= (n, l)-> `if`(n=1, 2^(l[1]-1)*mul(ithprime(mul(l[j],
          j=1..i-1))^(l[i]-1), i=2..nops(l)), min(seq(b(n/d,
            [l[], d]), d=numtheory[divisors](n) minus{1}))):
    a:= n-> `if`(n=0, 1, b(n+1, [])):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, l_] := If[n==1, 2^(l[[1]]-1)*Product[Prime[Product[l[[j]], {j, 1, i-1}]]^(l[[i]]-1), {i, 2, Length[l]}], Min[Table[b[n/d, Append[l, d]], {d, Divisors[n] ~Complement~ {1}}]]];
    a[n_] := If[n==0, 1, b[n+1, {}]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = A258119(n,1).

A360713 Sum of all prime encoded perfect partitions of n.

Original entry on oeis.org

1, 2, 4, 14, 16, 70, 64, 280, 356, 850, 1024, 4630, 4096, 10738, 20820, 47264, 65536, 176712, 262144, 643214, 1129572, 2246994, 4194304, 9716880, 17011472, 34785250, 68859688, 139829626, 268435456, 560518826, 1073741824, 2192136576, 4335013860, 8679894658
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2023

Keywords

Crossrefs

Row sums of A258119.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=1,
          mul(ithprime(mul(l[j], j=1..i-1))^(l[i]-1), i=1..nops(l)),
          add(b(n/d, [l[], d]), d=numtheory[divisors](n) minus{1}))
        end:
    a:= n-> b(n+1, []):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 1, Product[Prime[Product[l[[j]], {j, 1, i - 1}]]^(l[[i]] - 1), {i, 1, Length[l]}], Sum[b[n/d, Append[l, d]], {d, Divisors[n]~Complement~{1}}]];
    a[n_] := b[n + 1, {}];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Nov 21 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..A002033(n)} A258119(n,k).
Showing 1-4 of 4 results.