A258129 Octagonal numbers (A000567) that are the sum of three consecutive octagonal numbers.
698901, 5102520783381, 37252493940331837461, 271973082264557457061125141, 1985621622943208359132836202790421, 14496630316026749501691464257547633057301, 105837027604506739193825102426073141683789429781, 772695182809023513889440668692977953487035688873891861
Offset: 1
Examples
698901 is in the sequence because Oct(483) = 698901 = 231296 + 232965 + 234640 = Oct(278) + Oct(279) + Oct(280).
Links
- Colin Barker, Table of n, a(n) for n = 1..145
- Index entries for linear recurrences with constant coefficients, signature (7300803,-7300803,1).
Programs
-
Mathematica
CoefficientList[Series[-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 18 2017 *) LinearRecurrence[{7300803,-7300803,1},{698901,5102520783381,37252493940331837461},20] (* Harvey P. Dale, Sep 16 2018 *)
-
PARI
Vec(-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)) + O('x^20))
Formula
G.f.: -21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)).