cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258144 Alternating row sums of A257241, Stifel's version of the arithmetical triangle.

Original entry on oeis.org

1, 2, 0, -2, 5, 11, -14, -34, 57, 127, -209, -461, 793, 1717, -3002, -6434, 11441, 24311, -43757, -92377, 167961, 352717, -646645, -1352077, 2496145, 5200301, -9657699, -20058299, 37442161, 77558761, -145422674, -300540194, 565722721, 1166803111, -2203961429
Offset: 1

Views

Author

Wolfdieter Lang, May 22 2015

Keywords

Examples

			n = 3: a(3) = (1 - A001791(1)) = 1 - 1 = 0.
n = 4: a(4) = (1 - A001700(1)) = 1 - 3 = -2.
		

Crossrefs

Programs

  • Haskell
    a258144 = sum . zipWith (*) (cycle [1, -1]) . a257241_row
    -- Reinhard Zumkeller, May 22 2015
  • Mathematica
    Table[Sum[(-1)^(m+1)*Binomial[n, m], {m, Ceiling[n/2]}], {n, 50}] (* Paolo Xausa, Nov 14 2024 *)

Formula

a(n) = Sum_{m = 1 .. ceiling(n/2)} (-1)^(m+1)* binomial(n, m), n >= 1.
a(2*k+1) = (1 - (-1)^(k+1)*A001791(k)), k >= 0.
a(2*k) = (1 - (-1)^k*A001700(k-1)), k >= 1.
O.g.f. for a(2*k+1), k >= 0: (2+3*x - (1-x)*(1+2*x)*c(-x))/((1+4*x)*(1-x)), with the o.g.f. c(x) of A000108 (Catalan).
O.g.f. for a(2*(k+1)), k >= 0:
(3+2*x - (1-x)*c(-x))/((1+4*x)*(1-x)).
O.g.f. for a(n), n >= 1:
x*((1+x)*(2+x+2*x^2) - (1+x+2*x^2)*(1-x^2)*c(-x^2))/((1+4*x^2)*(1-x^2)).