cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258170 T(n,k) = (1/k!) * Sum_{i=0..k} (-1)^(k-i) * C(k,i) * A185651(n,i); triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 8, 6, 1, 0, 5, 15, 25, 10, 1, 0, 6, 36, 91, 65, 15, 1, 0, 7, 63, 301, 350, 140, 21, 1, 0, 8, 136, 972, 1702, 1050, 266, 28, 1, 0, 9, 261, 3027, 7770, 6951, 2646, 462, 36, 1, 0, 10, 530, 9355, 34115, 42526, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0,  1;
  0,  2,   1;
  0,  3,   3,    1;
  0,  4,   8,    6,     1;
  0,  5,  15,   25,    10,     1;
  0,  6,  36,   91,    65,    15,     1;
  0,  7,  63,  301,   350,   140,    21,    1;
  0,  8, 136,  972,  1702,  1050,   266,   28,   1;
  0,  9, 261, 3027,  7770,  6951,  2646,  462,  36,  1;
  0, 10, 530, 9355, 34115, 42526, 22827, 5880, 750, 45, 1;
		

Crossrefs

Columns k=0-1 give: A000004, A000027.
Row sums give A258171.
Main diagonal gives A057427.
T(2*n+1,n+1) gives A129506(n+1).

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember;
          add(phi(d)*k^(n/d), d=divisors(n))
        end:
    T:= (n, k)-> add((-1)^(k-i)*binomial(k, i)*A(n, i), i=0..k)/k!:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = DivisorSum[n, EulerPhi[#]*k^(n/#)&];
    T[n_, k_] := Sum[(-1)^(k-i)*Binomial[k, i]*A[n, i], {i, 0, k}]/k!; T[0, 0] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
  • Sage
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, stirling_number2, 10) # Peter Luschny, Aug 24 2019

Formula

T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) * C(k,i) * A185651(n,i).
From Petros Hadjicostas, Sep 07 2018: (Start)
Conjecture 1: T(n,k) = Stirling2(n,k) for k >= 1 and k <= n <= 2*k - 1.
Conjecture 2: T(n,k) = Stirling2(n,k) for k >= 2 and n prime >= 2.
Here, Stirling2(n,k) = A008277(n,k).
(End)