A258171 a(n) = Sum_{d|n} phi(d)*Bell(n/d) for n>0, a(0) = 0.
0, 1, 3, 7, 19, 56, 214, 883, 4163, 21163, 116039, 678580, 4213848, 27644449, 190900217, 1382958677, 10480146333, 82864869820, 682076827740, 5832742205075, 51724158351527, 474869816158547, 4506715739125923, 44152005855084368, 445958869299027638
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; add(phi(d)*k^(n/d), d=divisors(n)) end: T:= (n, k)-> add((-1)^(k-i)*binomial(k, i)*A(n, i), i=0..k)/k!: a:= n-> add(T(n, k), k=0..n): seq(a(n), n=0..30);
-
Mathematica
a[n_] := If[n == 0, 0, DivisorSum[n, EulerPhi[#] BellB[n/#] &]]; Table[a[n], {n, 0, 25}] (* Peter Luschny, Aug 27 2019 *)
Formula
a(n) = Sum_{k=0..n} A258170(n,k).
For n >= 1, a(n) = Sum_{k=1..n} Bell(gcd(n,k)). - Richard L. Ollerton, May 09 2021
Extensions
New name from Peter Luschny, Aug 27 2019
Comments