cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A258173 Sum over all Dyck paths of semilength n of products over all peaks p of y_p, where y_p is the y-coordinate of peak p.

Original entry on oeis.org

1, 1, 3, 12, 58, 321, 1975, 13265, 96073, 743753, 6113769, 53086314, 484861924, 4641853003, 46441475253, 484327870652, 5252981412262, 59132909030463, 689642443691329, 8319172260103292, 103645882500123026, 1331832693574410475, 17629142345935969713
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
Number of general rooted ordered trees with n edges and "back edges", which are additional edges connecting vertices to their ancestors. Every vertex specifies an ordering on the edges to its children and back edges to its ancestors altogether; it may be connected to the same ancestor by multiple back edges, distinguishable only by their relative ordering under that vertex. - Li-yao Xia, Mar 06 2017

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
         `if`(x=0, 1, b(x-1, y-1, 0)*y^t+b(x-1, y+1, 1)))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 25; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/(k*x + 2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)

Formula

G.f.: T(0), where T(k) = 1 - x/(k*x + 2*x - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2015
Conjecture: a(n) = A371567(n-1,0) for n > 0 with a(0) = 1. - Mikhail Kurkov, Nov 07 2024

A258174 Sum over all Dyck paths of semilength n of products over all peaks p of x_p*y_p, where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 7, 84, 1486, 35753, 1111931, 43150593, 2035666985, 114412223081, 7538224510181, 574552299138202, 50096579094908148, 4949493445607316419, 549534510282406667069, 68071071679372210762156, 9347203754680124767253730, 1414740620049957735248175695
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x*y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x*y, 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258175 Sum over all Dyck paths of semilength n of products over all peaks p of x_p+y_p, where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 2, 12, 114, 1448, 22770, 424164, 9095450, 220023184, 5914998594, 174682531260, 5614908340866, 194967208057272, 7267467723747218, 289270983756577620, 12239218862861690250, 548301077168477951520, 25918121712918957399426, 1288797080051656060595820
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x+y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x + y, 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258176 Sum over all Dyck paths of semilength n of products over all peaks p of x_p^y_p, where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 7, 142, 9354, 2503597, 3260627607, 24105227716863, 1028836978599566213, 290383808553140390346475, 511963364817949502725911280781, 6704846980724405836568589845161191576, 584709361918378923208855262622537662297053728
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..15);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^y, 1] + b[x - 1, y + 1, True]]];
    a[n_] :=  b[2*n, 0, False];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258177 Sum over all Dyck paths of semilength n of products over all peaks p of y_p^x_p, where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 5, 112, 15312, 22928885, 475971133797, 164769697242392241, 1674694178196441599627207, 434453335415659344048321288040053, 2772047111897899211702422870954450438220795, 919691726760748842849028933552012720445531166591469510
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^x, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..15);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, y^x, 1] + b[x - 1, y + 1, True]]];
    a[n_] :=  b[2*n, 0, False];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258178 Sum over all Dyck paths of semilength n of products over all peaks p of x_p^2, where x_p is the x-coordinate of peak p.

Original entry on oeis.org

1, 1, 13, 414, 24324, 2279209, 311524201, 58467947511, 14424374692879, 4525566110365523, 1759527523008436279, 830255082140922306224, 467382831980334193769718, 309419146352957449765072455, 237980526477430552734199922151, 210427994109788912088395561755374
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^2, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^2, 1] + b[x - 1, y + 1, True] ]];
    a[n_] :=  b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258179 Sum over all Dyck paths of semilength n of products over all peaks p of y_p^2, where y_p is the y-coordinate of peak p.

Original entry on oeis.org

1, 1, 5, 34, 312, 3649, 52161, 889843, 17796555, 411120395, 10838039407, 322752018060, 10762432731362, 398802951148255, 16312276452291935, 732189190349581890, 35876807697443520000, 1910107567584518883891, 110035833179472385285367, 6832792252684597270659486
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^2, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/( (k+2)^2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)

Formula

G.f.: T(0), where T(k) = 1 - x/( (k+2)^2*x - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2015

A258180 Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

A258181 Sum over all Dyck paths of semilength n of products over all peaks p of 2^(x_p-y_p), where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 1, 5, 89, 5933, 1540161, 1584150165, 6497470064169, 106497075348688637, 6980195689972655145233, 1829876050804408046228327525, 1918781572083632396857805205324025, 8047973452254281276702044410544321359565, 135022681866797995009325363468217320506328688097
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, 2^(x-y), 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..15);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, 2^(x - y), 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)

Formula

a(n) ~ c * 2^(n*(n-1)), where c = 1.47818066525747143617276638534... . - Vaclav Kotesovec, Jun 01 2015
Showing 1-9 of 9 results.