A258172
Sum over all Dyck paths of semilength n of products over all peaks p of x_p, where x_p is the x-coordinate of peak p.
Original entry on oeis.org
1, 1, 5, 40, 434, 5901, 95997, 1812525, 38875265, 932135347, 24678938063, 714385754446, 22428656766320, 758632387171075, 27489135956517315, 1061913384743418360, 43550536908458238570, 1889211624465639489675, 86406059558668152123975, 4154647501527354507485040
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258174
Sum over all Dyck paths of semilength n of products over all peaks p of x_p*y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 7, 84, 1486, 35753, 1111931, 43150593, 2035666985, 114412223081, 7538224510181, 574552299138202, 50096579094908148, 4949493445607316419, 549534510282406667069, 68071071679372210762156, 9347203754680124767253730, 1414740620049957735248175695
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258175,
A258176,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x*y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x*y, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258175
Sum over all Dyck paths of semilength n of products over all peaks p of x_p+y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 2, 12, 114, 1448, 22770, 424164, 9095450, 220023184, 5914998594, 174682531260, 5614908340866, 194967208057272, 7267467723747218, 289270983756577620, 12239218862861690250, 548301077168477951520, 25918121712918957399426, 1288797080051656060595820
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258176,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x+y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x + y, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258176
Sum over all Dyck paths of semilength n of products over all peaks p of x_p^y_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 7, 142, 9354, 2503597, 3260627607, 24105227716863, 1028836978599566213, 290383808553140390346475, 511963364817949502725911280781, 6704846980724405836568589845161191576, 584709361918378923208855262622537662297053728
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258177,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^y, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^y, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258177
Sum over all Dyck paths of semilength n of products over all peaks p of y_p^x_p, where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 5, 112, 15312, 22928885, 475971133797, 164769697242392241, 1674694178196441599627207, 434453335415659344048321288040053, 2772047111897899211702422870954450438220795, 919691726760748842849028933552012720445531166591469510
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258178,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^x, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, y^x, 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258178
Sum over all Dyck paths of semilength n of products over all peaks p of x_p^2, where x_p is the x-coordinate of peak p.
Original entry on oeis.org
1, 1, 13, 414, 24324, 2279209, 311524201, 58467947511, 14424374692879, 4525566110365523, 1759527523008436279, 830255082140922306224, 467382831980334193769718, 309419146352957449765072455, 237980526477430552734199922151, 210427994109788912088395561755374
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258179,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x^2, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x^2, 1] + b[x - 1, y + 1, True] ]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258179
Sum over all Dyck paths of semilength n of products over all peaks p of y_p^2, where y_p is the y-coordinate of peak p.
Original entry on oeis.org
1, 1, 5, 34, 312, 3649, 52161, 889843, 17796555, 411120395, 10838039407, 322752018060, 10762432731362, 398802951148255, 16312276452291935, 732189190349581890, 35876807697443520000, 1910107567584518883891, 110035833179472385285367, 6832792252684597270659486
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258180,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, y^2, 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/( (k+2)^2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)
A258180
Sum over all Dyck paths of semilength n of products over all peaks p of C(x_p,y_p), where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 4, 33, 517, 15326, 852912, 91023697, 19716262702, 8794395041567, 8016790849841585, 15556074485786226848, 64891787190080888991273, 561815453349204340865790817, 10402242033224422585780623039909, 423787530114579490372987256671625678
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258181.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, binomial(x, y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..20);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, Binomial[x, y], 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A258181
Sum over all Dyck paths of semilength n of products over all peaks p of 2^(x_p-y_p), where x_p and y_p are the coordinates of peak p.
Original entry on oeis.org
1, 1, 5, 89, 5933, 1540161, 1584150165, 6497470064169, 106497075348688637, 6980195689972655145233, 1829876050804408046228327525, 1918781572083632396857805205324025, 8047973452254281276702044410544321359565, 135022681866797995009325363468217320506328688097
Offset: 0
Cf.
A000108,
A000698,
A005411,
A005412,
A258172,
A258173,
A258174,
A258175,
A258176,
A258177,
A258178,
A258179,
A258180.
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, 2^(x-y), 1) +
b(x-1, y+1, true) ))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..15);
-
b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, 2^(x - y), 1] + b[x - 1, y + 1, True]]];
a[n_] := b[2*n, 0, False];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
A384613
Number of rooted ordered trees with n non-root nodes such that all leaf nodes can be k different colors where k is the degree of their parent node.
Original entry on oeis.org
1, 1, 5, 36, 340, 4019, 57696, 982146, 19419042, 438068191, 11106513798, 312555754796, 9663786464541, 325515760762637, 11861723942987878, 464834173383876612, 19490387161582849600, 870582781070074780946, 41266849779858887379029, 2068827708558025551348644
Offset: 0
a(2) = 5 counts:
o o o o o
| / \ / \ / \ / \
o (1) (1) (1) (2) (2) (1) (2) (2)
|
(1)
-
G(k,N) = if(k>N, 1, 1+ sum(i=1,N, (x*(G(k+1,N-i+1)+i-1))^i))
G_x(N) = {my(x='x+O('x^N)); Vec(G(1,N)+ O('x^(N+1)))}
Showing 1-10 of 13 results.
Comments