A258173 Sum over all Dyck paths of semilength n of products over all peaks p of y_p, where y_p is the y-coordinate of peak p.
1, 1, 3, 12, 58, 321, 1975, 13265, 96073, 743753, 6113769, 53086314, 484861924, 4641853003, 46441475253, 484327870652, 5252981412262, 59132909030463, 689642443691329, 8319172260103292, 103645882500123026, 1331832693574410475, 17629142345935969713
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- Antti Karttunen, Bijection between rooted trees with back edges and Dyck paths with multiplicity, SeqFans mailing list, Mar 2 2017.
- Wikipedia, Lattice path
- Li-yao Xia, Definition and enumeration of rooted trees with back edges in Haskell, blog post, Mar 1 2017.
Crossrefs
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, 0)*y^t+b(x-1, y+1, 1))) end: a:= n-> b(2*n, 0$2): seq(a(n), n=0..25);
-
Mathematica
nmax = 25; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/(k*x + 2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)
Formula
G.f.: T(0), where T(k) = 1 - x/(k*x + 2*x - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2015
Conjecture: a(n) = A371567(n-1,0) for n > 0 with a(0) = 1. - Mikhail Kurkov, Nov 07 2024
Comments