A258193 Define a<+>b = odd part(odd part(a) + odd part(b)), where odd part(n) = A000265(n); a(n) is the smallest prime of the form <+>_{0<=i<=k} binomial (n,i), or a(n)=0 if there is no such a prime (see comment).
0, 0, 0, 0, 3, 3, 11, 0, 5, 3, 3, 17, 7, 23, 53, 29, 13, 5, 5, 3, 11, 3, 3, 823, 13, 7, 7, 457, 109, 109, 233, 2267, 17, 59, 151, 5, 19, 5, 5, 3, 113, 11, 11, 3, 23, 3, 3, 71, 43, 13, 13, 7, 179, 7, 7, 193, 29, 2137, 863, 443, 31, 5498157739, 977, 163
Offset: 1
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.Function (on) a258193 n = head $ (filter ((== 1) . a010051'') $ scanl1 (<+>) (a034868_row n)) ++ [0] where (<+>) = (a000265 .) . on (+) a000265 -- Reinhard Zumkeller, Jun 20 2015
-
Mathematica
vSum[a_,b_]:=#[#[a]+#[b]]&[#/2^IntegerExponent[#,2]&]; Table[ First[Select[FoldList[vSum,First[#],Rest[#]]&[Map[Binomial[n,#]&,Range[0,n]]],PrimeQ]/.{}->{0}],{n,100}] (*Peter J. C. Moses, May 23 2015*)
Extensions
More terms from Peter J. C. Moses, May 23 2015
Comments