A258197 Arithmetic derivative of Pascal's triangle.
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 5, 4, 0, 0, 1, 7, 7, 1, 0, 0, 5, 8, 24, 8, 5, 0, 0, 1, 10, 12, 12, 10, 1, 0, 0, 12, 32, 92, 59, 92, 32, 12, 0, 0, 6, 60, 124, 165, 165, 124, 60, 6, 0, 0, 7, 39, 244, 247, 456, 247, 244, 39, 7, 0, 0, 1, 16, 103, 371, 493, 493, 371, 103, 16, 1, 0
Offset: 0
Examples
. First 10 rows: | Pascal's triangle: . 0: 0 | 1 . 1: 0,0 | 1,1 . 2: 0,1,0 | 1,2,1 . 3: 0,1,1,0 | 1,3,3,1 . 4: 0,4,5,4,0 | 1,4,6,4,1 . 5: 0,1,7,7,1,0 | 1,5,10,10,5,1 . 6: 0,5,8,24,8,5,0 | 1,6,15,20,15,6,1 . 7: 0,1,10,12,12,10,1,0 | 1,7,21,35,35,21,7,1 . 8: 0,12,32,92,59,92,32,12,0 | 1,8,28,56,70,56,28,8,1 . 9: 0,6,60,124,165,165,124,60,6,0 | 1,9,36,84,126,126,84,36,9,1 .
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
Programs
-
Haskell
a258197 n k = a258197_tabl !! n !! k a258197_row n = a258197_tabl !! n a258197_tabl = map (map a003415) a007318_tabl
-
Mathematica
ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[0] = ad[1] = 0; Table[ad[Binomial[n, k]], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 13 2025 *)
Comments