cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A258318 Number of distinct numbers in rows 0 through n of triangle A258197.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 9, 12, 16, 20, 24, 29, 34, 41, 44, 50, 57, 66, 74, 83, 91, 102, 112, 124, 135, 148, 161, 174, 187, 201, 214, 230, 246, 263, 279, 296, 313, 331, 349, 369, 388, 408, 428, 450, 471, 494, 516, 540, 563, 588, 612, 637, 662, 689, 715, 741, 769
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2015

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, insert, size)
    a258318 n = a258318_list !! n
    a258318_list = f 2 a258197_tabl $ singleton 0 where
       f k (xs:xss) zs = g (take (div k 2) xs) zs where
         g []     ys = size ys : f (k + 1) xss ys
         g (x:xs) ys = g xs (insert x ys)

A258317 Row sums of triangle A258197.

Original entry on oeis.org

0, 0, 1, 2, 13, 16, 50, 46, 331, 710, 1530, 1968, 6694, 8352, 15550, 24890, 133573, 181552, 486054, 641978, 1840816, 3296140, 6314768, 7452540, 34421218, 59313706, 110347662, 258695534, 627750404, 874913936, 2053073798, 2556088458, 12615058063, 22442790438
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2015

Keywords

Crossrefs

Cf. A258197.

Programs

  • Haskell
    a258317 = sum . a258197_row
    
  • PARI
    f(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = vecsum(vector(n+1, k, f(binomial(n,k-1)))); \\ Michel Marcus, Jan 23 2022

Formula

a(n) = Sum_{k=0..n} A258197(n,k).

A068312 Arithmetic derivative of triangular numbers.

Original entry on oeis.org

0, 0, 1, 5, 7, 8, 10, 32, 60, 39, 16, 61, 71, 20, 71, 244, 212, 111, 123, 143, 247, 131, 34, 380, 520, 155, 378, 621, 275, 247, 263, 1008, 1280, 271, 239, 951, 795, 56, 343, 1256, 1004, 431, 451, 581, 1443, 942, 70, 2092, 2492, 840
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 25 2002

Keywords

Examples

			a(7) = d(7*8/2) = d(28) = d(2*14) = d(2)*14 + 2*d(14) = 1*14 + 2*d(2*7) = 14 + 2*(2*d(7) + d(2)*7) = 14 + 2*(2*1 + 1*7) = 14 + 2*9 = 14 + 18 = 32, where d(n) = A003415(n) with d(1) = 0, d(prime) = 1 and d(m*n) = d(m)*n + m*d(n).
		

Crossrefs

Programs

  • Haskell
    a068312 = a003415 . a000217  -- Reinhard Zumkeller, May 26 2015
    
  • Mathematica
    a[0] = a[1] = 0; a[n_] := (n*(n+1)/2) * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n*(n+1)/2]); Array[a, 100, 0] (* Amiram Eldar, May 14 2025 *)
  • Python
    from sympy import factorint
    def A068312(n): return 0 if n <= 1 else ((n+1)*sum((n*e//p for p,e in factorint(n).items()))+ sum(((n+1)*e//p for p,e in factorint(n+1).items()))*n - (n*(n+1)//2))//2 # Chai Wah Wu, Jun 24 2022

Formula

a(n) = A003415(A000217(n)).
For n > 1: a(n) = A258197(n,2) = A258197(n,n-2). - Reinhard Zumkeller, May 26 2015

Extensions

a(0)=0 prepended by Reinhard Zumkeller, May 26 2015

A258290 Arithmetic derivative of central binomial coefficients, cf. A000984.

Original entry on oeis.org

0, 1, 5, 24, 59, 456, 1448, 6868, 19749, 69364, 236356, 1526956, 3717440, 22858340, 122553540, 474051984, 954720543, 5726109024, 19329586520, 92051285020, 319059863484, 1271796704788, 4829219746964, 29791326914640, 74372011398840, 340296661452300
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258290 = a003415 . a000984
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[0] = ad[1] = 0; a[n_] := ad[Binomial[2*n, n]]; Array[a, 26, 0] (* Amiram Eldar, Apr 13 2025 *)

Formula

a(n) = A003415(A000984(n)).
Central terms in triangle A258197: a(n) = A258197(2*n,n).
Showing 1-4 of 4 results.