cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258227 Concatenate the natural numbers, then partition into minimal strings so that adjacent terms have a common divisor greater than 1.

Original entry on oeis.org

12, 3, 45, 6, 78, 9, 1011, 12, 1314, 15, 1617, 18, 192, 0, 2, 12, 2, 2, 32, 4, 2, 52, 6, 2, 72, 8, 2, 930, 3, 132, 3, 3, 3, 435, 3, 6, 3, 738, 3, 9, 4041, 42, 4, 34, 4, 4, 54, 6, 4, 74, 8, 4, 950, 5, 15, 25, 35, 45, 5, 5, 65, 75, 85, 960, 6, 16, 2, 6, 3, 6
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2015

Keywords

Comments

00 -> 0 is not allowed, else all digits will not appear in the concatenation of terms. For example, a(198)..a(201) = 198, 19920, 0, 2 and not 198, 192, 0, 2. - Michael S. Branicky, Dec 03 2021

Examples

			.  a(n) | 12,3,45,6,78,9,1011,12,1314,15,1617,18,192,0,2,12,2,2,32,4,2,52
--------+----------------------------------------------------------------
.  gcd  |   3 3  3 6  3 3    3  6    3  3    3  6 192 2 2  2 2 2  4 2 2  .
		

Crossrefs

Programs

  • Haskell
    a258227 n = a258227_list !! (n-1)
    a258227_list = f 12 1 (map toInteger $ tail a007376_list) where
       f x y (d:ds) | gcd x y > 1 = y : f y d ds
                    | otherwise   = f x (10 * y + d) ds
    
  • Python
    from math import gcd
    from itertools import count
    def diggen():
        for k in count(1): yield from list(map(int, str(k)))
    def aupton(terms):
        g = diggen()
        alst, aset = [12], {12}
        , , nxtd, nxtnxtd = next(g), next(g), next(g), next(g)
        for n in range(2, terms+1):
            an, nxtd, nxtnxtd = nxtd, nxtnxtd, next(g)
            while gcd(an, alst[-1]) == 1 or nxtd == nxtnxtd == 0:
                an, nxtd, nxtnxtd = int(str(an) + str(nxtd)), nxtnxtd, next(g)
            alst.append(an); aset.add(an)
        return alst
    print(aupton(70)) # Michael S. Branicky, Dec 03 2021

Formula

GCD(a(n), a(n+1)) > 1.