cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258280 Number T(n,k) of partitions of k copies of n into distinct parts; triangle T(n,k), n>=0, 0<=k<=max(1,ceiling(n/2)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 1, 1, 5, 7, 4, 1, 1, 6, 9, 5, 1, 1, 8, 16, 13, 5, 1, 1, 10, 21, 18, 7, 1, 1, 12, 33, 37, 20, 6, 1, 1, 15, 46, 56, 31, 8, 1, 1, 18, 68, 103, 75, 29, 7, 1, 1, 22, 95, 154, 118, 47, 10, 1, 1, 27, 140, 279, 266, 134, 40, 8, 1
Offset: 0

Views

Author

Alois P. Heinz, May 25 2015

Keywords

Examples

			T(7,0) = 1: [].
T(7,1) = 5: [7], [6,1], [5,2], [4,3], [4,2,1].
T(7,2) = 7: [7;6,1], [7;5,2], [7;4,3], [7;4,2,1], [6,1;5,2], [6,1;4,3], [5,2;4,3].
T(7,3) = 4: [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3].
T(7,4) = 1: [7;6,1;5,2;4,3].
T(8,4) = 1: [8;7,1;6,2;5,3].
Triangle T(n,k) begins:
00  :  1,  1;
01  :  1,  1;
02  :  1,  1;
03  :  1,  2,   1;
04  :  1,  2,   1;
05  :  1,  3,   3,   1;
06  :  1,  4,   4,   1;
07  :  1,  5,   7,   4,   1;
08  :  1,  6,   9,   5,   1;
09  :  1,  8,  16,  13,   5,   1;
10  :  1, 10,  21,  18,   7,   1;
11  :  1, 12,  33,  37,  20,   6,  1;
12  :  1, 15,  46,  56,  31,   8,  1;
13  :  1, 18,  68, 103,  75,  29,  7, 1;
14  :  1, 22,  95, 154, 118,  47, 10, 1;
15  :  1, 27, 140, 279, 266, 134, 40, 8, 1;
       ...
		

Crossrefs

Row sums give 1 + A258289.
Row lengths give 1 + A065033.
T(n^2,n) gives A284824.

Programs

  • Maple
    b:= proc() option remember; local m; m:= args[nargs];
         `if`(nargs=1, 1, `if`(args[1]=0, b(args[t] $t=2..nargs),
         `if`(m=0 or add(args[i], i=1..nargs-1)> m*(m+1)/2, 0,
          b(args[t] $t=1..nargs-1, m-1) +add(`if`(args[j]-m<0, 0,
          b(sort([seq(args[i] -`if`(i=j, m, 0), i=1..nargs-1)])[]
          , m-1)), j=1..nargs-1))))
        end:
    T:= (n, k)-> b(n$k+1)/k!:
    seq(seq(T(n, k), k=0..max(1, ceil(n/2))), n=0..15);
  • Mathematica
    disParts[n_] := disParts[n] = Select[IntegerPartitions[n], Length[#] == Length[Union[#]]&];
    T[n_, k_] := Select[Subsets[disParts[n], {k}], Length[Flatten[#]] == Length[Union[Flatten[#]]]&] // Length;
    Table[T[n, k], {n, 0, 15}, {k, 0, Max[1, Ceiling[n/2]]}] // Flatten (* Jean-François Alcover, Feb 17 2021 *)

Formula

T(n,k) = 1/k! * [Product_{i=1..k} x_i^n] Product_{j>0} (1+Sum_{i=1..k} x_i^j).