A108796
Number of unordered pairs of partitions of n (into distinct parts) with empty intersection.
Original entry on oeis.org
1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 33, 46, 68, 95, 140, 187, 266, 372, 507, 683, 948, 1256, 1692, 2263, 3003, 3955, 5248, 6824, 8921, 11669, 15058, 19413, 25128, 32149, 41129, 52578, 66740, 84696, 107389, 135310, 170277, 214386, 268151, 335261, 418896, 521204
Offset: 0
Of the partitions of 12 into different parts, the partition (5+4+2+1) has an empty intersection with only (12) and (9+3).
From _Gus Wiseman_, Oct 07 2023: (Start)
The a(6) = 4 pairs are:
((6),(5,1))
((6),(4,2))
((6),(3,2,1))
((5,1),(4,2))
(End)
Main diagonal of
A284593 times (1/2).
This is the strict case of
A260669.
-
using DiscreteMath`Combinatorica`and ListPartitionsQ[n_Integer]:= Flatten[ Reverse /@ Table[(Range[m-1, 0, -1]+#1&)/@ TransposePartition/@ Complement[Partitions[ n-m* (m-1)/2, m], Partitions[n-m*(m-1)/2, m-1]], {m, -1+Floor[1/2*(1+Sqrt[1+8*n])]}], 1]; Table[Plus@@Flatten[Outer[If[Intersection[Flatten[ #1], Flatten[ #2]]==={}, 1, 0]&, ListPartitionsQ[k], ListPartitionsQ[k], 1]], {k, 48}]/2
nmax = 50; p = 1; Do[p = Expand[p*(1 + x^j + y^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Table[Coefficient[p, x^n*y^n]/2, {n, 1, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Length[Select[Subsets[Select[IntegerPartitions[n], UnsameQ@@#&],{2}],Intersection@@#=={}&]],{n,15}] (* Gus Wiseman, Oct 07 2023 *)
-
a(n) = {my(A=1 + O(x*x^n) + O(y*y^n)); polcoef(polcoef(prod(k=1, n, A + x^k + y^k), n), n)/2} \\ Andrew Howroyd, Oct 10 2023
A258281
Number of partitions of 3 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 4, 5, 13, 18, 37, 56, 103, 154, 279, 398, 682, 1027, 1664, 2433, 3977, 5755, 8957, 13173, 19980, 29002, 43894, 62562, 92531, 133550, 193348, 274049, 398218, 558839, 796906, 1120833, 1577874, 2197279, 3089063, 4258348, 5915878, 8170572, 11231601, 15355764
Offset: 5
a(7) = 4: [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3].
-
nmax = 30; p = 1; Do[p = Expand[p*(1 + x^j + y^j + z^j)]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) && (Exponent[#, z] <= nmax) &], {j, 1, nmax}]; p = Select[p, Exponent[#, x] == Exponent[#, y] == Exponent[#, z] &]; Table[Coefficient[p, x^n*y^n*z^n]/6, {n, 5, nmax}] (* Vaclav Kotesovec, Apr 07 2017 *)
A258282
Number of partitions of 4 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 5, 7, 20, 31, 75, 118, 266, 401, 841, 1345, 2581, 4023, 7758, 11932, 21543, 33941, 59099, 91816, 159059, 242955, 407523, 634827, 1032202, 1576276, 2572429, 3888631, 6177754, 9400070, 14665453, 22055721, 34349618, 51033150, 78166821, 116800290, 176090572
Offset: 7
a(9) = 5: [9;8,1;7,2;6,3], [9;8,1;7,2;5,4], [9;8,1;6,3;5,4], [9;7,2;6,3;5,4], [8,1;7,2;6,3;5,4].
A258283
Number of partitions of 5 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 6, 8, 29, 47, 134, 213, 559, 939, 2178, 3564, 8184, 13225, 27904, 46376, 93151, 153022, 302948, 489271, 931845, 1540667, 2818014, 4565768, 8369128, 13423638, 23782711, 38552461, 66714197, 106889113, 184313769, 291358130, 491972639, 785299762, 1298230358
Offset: 9
a(11) = 6: [11;10,1;9,2;8,3;7,4], [11;10,1;9,2;8,3;6,5], [11;10,1;9,2;7,4;6,5], [11;10,1;8,3;7,4;6,5], [11;9,2;8,3;7,4;6,5], [10,1;9,2;8,3;7,4;6,5].
A258284
Number of partitions of 6 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 7, 10, 40, 64, 215, 373, 1076, 1823, 5052, 8519, 21279, 36836, 86354, 148550, 338354, 571638, 1242227, 2156661, 4453444, 7573979, 15612927, 26325001, 52042210, 88853970, 170752721, 288367364, 550431942, 916369374, 1706148831, 2877961566, 5219075925
Offset: 11
a(13) = 7: [13;12,1;11,2;10,3;9,4;8,5], [13;12,1;11,2;10,3;9,4;7,6], [13;12,1;11,2;10,3;8,5;7,6], [13;12,1;11,2;9,4;8,5;7,6], [13;12,1;10,3;9,4;8,5;7,6], [13;11,2;10,3;9,4;8,5;7,6], [12,1;11,2;10,3;9,4;8,5;7,6].
A258285
Number of partitions of 7 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 8, 11, 52, 91, 326, 567, 1925, 3361, 10114, 17998, 50084, 89303, 236472, 414418, 1036205, 1872828, 4394636, 7781405, 18111119, 31868623, 70513669, 125728510, 269084037, 475275290, 1005278492, 1749029589, 3594394017, 6355048530, 12651552078, 22036692845, 43804062866, 75652893831
Offset: 13
A258286
Number of partitions of 8 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 9, 13, 66, 111, 475, 852, 3128, 5668, 19011, 34804, 108328, 195267, 567674, 1059291, 2849122, 5212695, 13785287, 25156313, 62613272, 115799409, 277245609, 508970856, 1196118973, 2161689541
Offset: 15
A258287
Number of partitions of 9 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 10, 14, 82, 145, 652, 1198, 4880, 9095, 33810, 61933, 212087, 405116, 1261067, 2366558, 7163718, 13477035, 37969720, 72363916, 194919282
Offset: 17
A258288
Number of partitions of 10 copies of n into distinct parts.
Original entry on oeis.org
1, 1, 11, 16, 99, 174, 875, 1657, 7352, 13655, 55787, 107946, 393317, 751343, 2624771, 5056414, 16243829, 31688464, 96658985
Offset: 19
A258289
Number of partitions of 1, 2, 3, or more copies of n into distinct parts.
Original entry on oeis.org
1, 1, 1, 3, 3, 7, 9, 17, 21, 43, 57, 109, 157, 301, 447, 895, 1307, 2663, 4207, 8463, 13283, 28489, 45151, 95485, 157767, 336711, 561603, 1236963, 2061173, 4567227, 7946575, 17516101, 30324977, 69519697, 121465499, 276609723, 496333307, 1137900605
Offset: 0
a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [2].
a(3) = 3: [3], [2,1], [3;2,1].
a(4) = 3: [4], [3,1], [4;3,1].
a(5) = 7: [5], [4,1], [3,2], [5;4,1], [5;3,2], [4,1;3,2], [5;4,1;3,2].
a(7) = 17: [7], [6,1], [5,2], [4,3], [4,2,1], [7;6,1], [7;5,2], [7;4,3], [7;4,2,1], [6,1;5,2], [6,1;4,3], [5,2;4,3], [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3], [7;6,1;5,2;4,3].
-
b:= proc() option remember; local m; m:= args[nargs];
`if`(nargs=1, 1, `if`(args[1]=0, b(args[t] $t=2..nargs),
`if`(m=0 or add(args[i], i=1..nargs-1)> m*(m+1)/2, 0,
b(args[t] $t=1..nargs-1, m-1)+add(`if`(args[j]-m<0, 0,
b(sort([seq(args[i]-`if`(i=j, m, 0), i=1..nargs-1)])[]
, m-1)), j=1..nargs-1))))
end:
a:= n-> add(b(n$k+1)/k!, k=1..max(1, ceil(n/2))):
seq(a(n), n=0..20);
-
disParts[n_] := disParts[n] = Select[IntegerPartitions[n], Length[#] == Length[Union[#]]&];
T[n_, k_] := Select[Subsets[disParts[n], {k}], Length[Flatten[#]] == Length[Union[Flatten[#]]]&] // Length;
a[n_] := a[n] = If[n == 0, 1, Sum[T[n, k], {k, 1, Quotient[n+1, 2]}]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, May 01 2022 *)
Showing 1-10 of 12 results.
Comments