cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258289 Number of partitions of 1, 2, 3, or more copies of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 9, 17, 21, 43, 57, 109, 157, 301, 447, 895, 1307, 2663, 4207, 8463, 13283, 28489, 45151, 95485, 157767, 336711, 561603, 1236963, 2061173, 4567227, 7946575, 17516101, 30324977, 69519697, 121465499, 276609723, 496333307, 1137900605
Offset: 0

Views

Author

Alois P. Heinz, May 25 2015

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [2].
a(3) = 3: [3], [2,1], [3;2,1].
a(4) = 3: [4], [3,1], [4;3,1].
a(5) = 7: [5], [4,1], [3,2], [5;4,1], [5;3,2], [4,1;3,2], [5;4,1;3,2].
a(7) = 17: [7], [6,1], [5,2], [4,3], [4,2,1], [7;6,1], [7;5,2], [7;4,3], [7;4,2,1], [6,1;5,2], [6,1;4,3], [5,2;4,3], [7;6,1;5,2], [7;6,1;4,3], [7;5,2;4,3], [6,1;5,2;4,3], [7;6,1;5,2;4,3].
		

Crossrefs

Programs

  • Maple
    b:= proc() option remember; local m; m:= args[nargs];
         `if`(nargs=1, 1, `if`(args[1]=0, b(args[t] $t=2..nargs),
         `if`(m=0 or add(args[i], i=1..nargs-1)> m*(m+1)/2, 0,
          b(args[t] $t=1..nargs-1, m-1)+add(`if`(args[j]-m<0, 0,
          b(sort([seq(args[i]-`if`(i=j, m, 0), i=1..nargs-1)])[]
          , m-1)), j=1..nargs-1))))
        end:
    a:= n-> add(b(n$k+1)/k!, k=1..max(1, ceil(n/2))):
    seq(a(n), n=0..20);
  • Mathematica
    disParts[n_] := disParts[n] = Select[IntegerPartitions[n], Length[#] == Length[Union[#]]&];
    T[n_, k_] := Select[Subsets[disParts[n], {k}], Length[Flatten[#]] == Length[Union[Flatten[#]]]&] // Length;
    a[n_] := a[n] = If[n == 0, 1, Sum[T[n, k], {k, 1, Quotient[n+1, 2]}]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, May 01 2022 *)

Formula

a(n) = Sum_{k=1..A065033(n)} A258280(n,k).
a(n) = Sum_{k=1..max(1,ceiling(n/2))} 1/k! * [Product_{i=1..k} x_i^n] Product_{j>0} (1+Sum_{i=1..k} x_i^j).