A258323 Sum T(n,k) over all partitions lambda of n into k distinct parts of Product_{i:lambda} prime(i); triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
1, 0, 2, 0, 3, 0, 5, 6, 0, 7, 10, 0, 11, 29, 0, 13, 43, 30, 0, 17, 94, 42, 0, 19, 128, 136, 0, 23, 231, 293, 0, 29, 279, 551, 210, 0, 31, 484, 892, 330, 0, 37, 584, 1765, 852, 0, 41, 903, 2570, 1826, 0, 43, 1051, 4273, 4207, 0, 47, 1552, 6747, 6595, 2310
Offset: 0
Examples
T(6,2) = 43 because the partitions of 6 into 2 distinct parts are {[5,1], [4,2]} and prime(5)*prime(1) + prime(4)*prime(2) = 11*2 + 7*3 = 22 + 21 = 43. Triangle T(n,k) begins: 1 0, 2; 0, 3; 0, 5, 6; 0, 7, 10; 0, 11, 29; 0, 13, 43, 30; 0, 17, 94, 42; 0, 19, 128, 136; 0, 23, 231, 293; 0, 29, 279, 551, 210;
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand( add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..min(1, n/i))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2)): seq(T(n), n=0..20);
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Expand[Sum[g[n-i*j, i-1] * (Prime[i]*x)^j, {j, 0, Min[1, n/i]}]]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)