cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258325 a(n) = Product_{k=1..n} (1 + p(k)), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 2, 6, 24, 144, 1152, 13824, 221184, 5087232, 157704192, 6781280256, 386532974592, 30149572018176, 3075256345853952, 418234863036137472, 74027570757396332544, 17174396415715949150208, 5117970131883352846761984, 1975536470906974198850125824
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 19 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember: `if`(n<1, 1,
          (1+combinat[numbpart](n))*a(n-1))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    Table[Product[PartitionsP[k]+1,{k,1,n}],{n,0,20}]

Formula

a(n) ~ c * A058694(n), where c = Product_{k>=1} (1 + 1/p(k)) = 7.60150293364724365227288154074110141857580676049277152624021470033199348...

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 26 2015