A258377 O.g.f. satisfies A^2(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) ).
1, 3, 13, 79, 649, 6955, 93813, 1539991, 29884881, 669628819, 17005862301, 482399018527, 15108642099673, 517599894435643, 19247498583665029, 771922934908235751, 33206411983713679009, 1525025984109289947171, 74466779211331635306029, 3852255519421356879419631
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..383
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Maple
#A258377 with(combinat): #recursively define row polynomials R(n,x) of A145901 R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i,x), i = 0..n-1) end if; end proc: #define a family of sequences depending on an integer parameter k a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1,k)*a(n-1-i,k), i = 0..n-1) end if; end proc: # display the case k = 1 seq(a(n,1), n = 0..19);
-
Mathematica
R[n_, x_] := R[n, x] = If[n==0, 1, 1+x*Sum[Binomial[n, i]*2^(n-i)*R[i, x], {i, 0, n-1}]]; a[n_, k_] := a[n, k] = If[n==0, 1, 1/n*Sum[R[i+1, k]*a[n-1-i, k], {i, 0, n-1}]]; a[n_] := a[n, 1]; a /@ Range[0, 19] (* Jean-François Alcover, Oct 02 2019 *)
Formula
a(0) = 1 and for n >= 1, a(n) = 1/n*Sum_{i = 0..n-1} R(i+1,1)*a(n-1-i), where R(n,x) denotes the n-th row polynomial of A145901.
O.g.f.: A(z) = 1 + 3*z + 13*z^2 + 79*z^3 + 649*z^4 + ... satisfies A^2(z) = 1/(1 - z)*1/(1 - 2*z)*A(z/(1 - 2*z)).
O.g.f.: A(z) = exp( Sum_{k >= 1} R(k,1)*z^k/k ).
1 + z*A'(z)/A(z) = 1 + 3*z + 17*z^2 + 147*z^3 + 1697*z^4 + ... is the o.g.f. for A080253.
a(n) = Sum_{j=0..n} binomial(n,j) * A084783(n,n-j). - Alois P. Heinz, Jun 09 2023
a(n) ~ (n-1)! * 2^(n - 1/2) / log(2)^(n+1). - Vaclav Kotesovec, May 28 2025
Comments