cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258414 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^(24*k)) dx.

Original entry on oeis.org

9, 4, 9, 7, 0, 3, 1, 2, 6, 2, 9, 4, 0, 0, 9, 3, 9, 5, 2, 6, 3, 4, 9, 8, 4, 9, 1, 7, 4, 5, 7, 4, 1, 5, 1, 5, 8, 7, 3, 6, 5, 1, 9, 5, 0, 9, 0, 9, 6, 9, 2, 9, 4, 4, 8, 8, 0, 9, 1, 7, 6, 5, 4, 3, 6, 8, 3, 0, 5, 1, 9, 5, 5, 6, 8, 7, 9, 2, 8, 8, 1, 7, 2, 6, 0, 0, 6, 8, 0, 3, 2, 8, 4, 8, 3, 5, 3, 5, 0, 1, 6, 8, 7, 2, 9, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

Integral_{x=-1..1} Product_{k>=1} (1-x^(24*k)) dx = Pi^2/(3*sqrt(3)) = 1.89940625258801878... . - Vaclav Kotesovec, Jun 02 2015
Equals the value of the Dirichlet L-series of a non-principal character modulo 12 (A110161) at s=2. - Jianing Song, Nov 16 2019

Examples

			0.9497031262940093952634984917457415158736519509096929448809176543683...
		

Crossrefs

Programs

  • Maple
    evalf(Pi^2/(6*sqrt(3)), 120);
  • Mathematica
    RealDigits[Pi^2/(6*Sqrt[3]),10,120][[1]]
    N[Sum[(-1)^n/(12*n*(3n-1)+1),{n,-Infinity,Infinity}],105]

Formula

Equals Pi^2/(6*sqrt(3)).
Equals Sum_{k>=1} A110161(n)/k^2 = Sum_{k>=1} Kronecker(12,k)/k^2. - Jianing Song, Nov 16 2019
Equals -Integral_{x=0..oo} log(x)/(x^6 + 1) dx. - Amiram Eldar, Aug 12 2020
Equals 1 + Sum_{k>=1} ( (-1)^k/(6*k-1)^2 + (-1)^k/(6*k+1)^2 ). - Sean A. Irvine, Jul 18 2021
Equals 1/(Product_{p prime == 1 or 11 (mod 12)} (1 - 1/p^2) * Product_{p prime == 5 or 7 (mod 12)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023