cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A003881 Decimal expansion of Pi/4.

Original entry on oeis.org

7, 8, 5, 3, 9, 8, 1, 6, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 7, 2, 1, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 3, 7, 7, 6, 4, 5, 5, 2, 4, 3, 7, 3, 6, 1, 4, 8, 0, 7, 6, 9, 5, 4, 1, 0, 1, 5, 7, 1, 5, 5, 2, 2, 4, 9, 6, 5, 7, 0, 0, 8, 7, 0, 6, 3, 3, 5, 5, 2, 9, 2, 6, 6, 9, 9, 5, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - Omar E. Pol, Sep 25 2013
Also the surface area of a quarter-sphere of diameter 1. - Omar E. Pol, Oct 03 2013
Least positive solution to sin(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014
Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - R. J. Mathar, May 27 2016
This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - Sanjar Abrarov, Jan 09 2017
Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - Mohammed Yaseen, Nov 29 2023

Examples

			0.785398163397448309615660845819875721049292349843776455243736148...
N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - _Peter Bala_, Nov 15 2016
		

References

  • Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 437.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 6.3 and 8.4, pp. 429 and 492.
  • Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.
  • J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 119.

Crossrefs

Cf. A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A001622.

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where
       machin = 4 * arccot 5 unity - arccot 239 unity
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
        | term == 0 = summa
        | otherwise = arccot'
          x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
        where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 20 2012
    
  • Magma
    R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
  • Maple
    evalf(Pi/4) ;
  • Mathematica
    RealDigits[N[Pi/4,6! ]]  (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
    (* PROGRAM STARTS *)
    (* Define the nested radicals a_k by recurrence *)
    a[k_] := Nest[Sqrt[2 + #1] & , 0, k]
    (* Example of Pi/4 approximation at K = 100 *)
    Print["The actual value of Pi/4 is"]
    N[Pi/4, 40]
    Print["At K = 100 the approximated value of Pi/4 is"]
    K := 100;  (* the truncating integer *)
    N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)
    (* Error terms for Pi/4 approximations *)
    Print["Error terms for Pi/4"]
    k := 1; (* initial value of the index k *)
    K := 10; (* initial value of the truncating integer K *)
    sqn := {}; (* initiate the sequence *)
    AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];
    While[K <= 30,
    AppendTo[sqn, {K,
       N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //
        N}]; K++]
    Print[MatrixForm[sqn]]
    (* Sanjar Abrarov, Jan 09 2017 *)
  • PARI
    Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
    
  • SageMath
    # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel
    def FastLeibniz(n):
        b = 2^(2*n-1); c = b; s = 0
        for k in range(n-1,-1,-1):
            t = 2*k+1
            s = s + c/t if is_even(k) else s - c/t
            b *= (t*(k+1))/(2*(n-k)*(n+k))
            c += b
        return s/c
    A003881 = RealField(3333)(FastLeibniz(1330))
    print(A003881)  # Peter Luschny, Nov 20 2012
    

Formula

Equals Integral_{x=0..oo} sin(2x)/(2x) dx.
Equals lim_{n->oo} n*A001586(n-1)/A001586(n) (conjecture). - Mats Granvik, Feb 23 2011
Equals Integral_{x=0..1} 1/(1+x^2) dx. - Gary W. Adamson, Jun 22 2003
Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - Jean-François Alcover, Mar 26 2013
Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - Bruno Berselli, May 13 2013
Equals (-digamma(1/4) + digamma(3/4))/4. - Jean-François Alcover, May 31 2013
Equals Sum_{n>=0} (-1)^n/(2*n+1). - Geoffrey Critzer, Nov 03 2013
Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - Vaclav Kotesovec, May 30 2015
Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - Dimitris Valianatos, Oct 05 2016
From Peter Bala, Nov 15 2016: (Start)
For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).
For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.
For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).
For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)
From Peter Bala, Nov 05 2019: (Start)
For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).
Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.
Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)
From Amiram Eldar, Aug 19 2020: (Start)
Equals arcsin(1/sqrt(2)).
Equals Product_{k>=1} (1 - 1/(2*k+1)^2).
Equals Integral_{x=0..oo} x/(x^4 + 1) dx.
Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)
With offset 1, equals 5 * Pi / 2. - Sean A. Irvine, Aug 19 2021
Equals (1/2)!^2 = Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - Bernard Schott, Jan 28 2022
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(1), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)
Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - Gary W. Adamson, Mar 03 2024
Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - Peter Bala, Mar 16 2024
Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - Gary W. Adamson, Mar 27 2024
Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - Antonio Graciá Llorente, Oct 04 2024
Equals Product_{k>=2} ((k + 1)^(k*(2*k + 1))*(k - 1)^(k*(2*k - 1)))/k^(4*k^2). - Antonio Graciá Llorente, Apr 12 2025
Equals Integral_{x=sqrt(2)..oo} dx/(x*sqrt(x^2 - 1)). - Kritsada Moomuang, May 29 2025

Extensions

a(98) and a(99) corrected by Reinhard Zumkeller, Nov 20 2012

A038509 Composite numbers congruent to +-1 mod 6.

Original entry on oeis.org

25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 385
Offset: 1

Views

Author

Keywords

Comments

Or, composite numbers with smallest prime factor >= 5.
Or, nonprime numbers n such that binomial(n+3, 3) mod n == 1. - Hieronymus Fischer, Sep 30 2007
Note that the primes > 3 are congruent to +-1 mod 6.
This sequence differs from A067793 (composite n such that phi(n) > 2n/3) starting at 385. Numbers in this sequence but not in A067793 are 385, 455, 595, 665, 805, 1015, 1085, 1925, 2275, 2695, etc. See A069043. - R. J. Mathar, Jun 08 2008 and Zak Seidov, Nov 02 2011
Intersection of A002808 and A007310. - Reinhard Zumkeller, Jun 30 2012
The product (24/25) * (36/35) * (48/49) * (54/55) * (66/65) * (78/77) * (84/85) * (90/91) * ... * ((6*k)/a(n)) * ... = Pi^2/(6*sqrt(3)), where 6*k is the nearest number to a(n), with k in A067611 but not in A002822. (See A258414.) - Dimitris Valianatos, Mar 27 2017

Crossrefs

Cf. A171993 (nonprimes of the form 3*k+-1).
Cf. A069043, A067793 (composite n such that phi(n) > 2n/3).

Programs

  • Haskell
    a038509 n = a038509_list !! (n-1)
    a038509_list = [x | x <- a002808_list, gcd x 6 == 1]
    -- Reinhard Zumkeller, Aug 05 2014, Jun 30 2012
    
  • Maple
    A038509 := proc(n)
        option remember;
        if n = 1 then
            25;
        else
            for a from procname(n-1)+1 do
                if not isprime(a) and modp(a,6) in {1,5} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A038509(n),n=1..30) ; # R. J. Mathar, Feb 28 2020
  • Mathematica
    Select[Range[1000], FactorInteger[#][[1,1]] >= 5 && ! PrimeQ[#] &] (* Robert G. Wilson v, Dec 19 2009 *)
    With[{nn=400},Select[Rest[Complement[Range[nn],Prime[Range[ PrimePi[ nn]]]]], MemberQ[ {1,5},Mod[#,6]]&]] (* Harvey P. Dale, Feb 21 2013 *)
    Select[Range[400],CompositeQ[#]&&MemberQ[{1,5},Mod[#,6]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    is(n)=gcd(n,6)==1 && !isprime(n) && n>7 \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012

Extensions

More terms from Robert G. Wilson v, Dec 19 2009
Entry revised by N. J. A. Sloane, Dec 31 2011, at the suggestion of Gary Detlefs

A328895 Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^2.

Original entry on oeis.org

8, 7, 2, 3, 5, 8, 0, 2, 4, 9, 5, 4, 8, 5, 9, 9, 4, 1, 7, 6, 9, 6, 9, 5, 1, 1, 7, 0, 2, 1, 1, 7, 5, 6, 6, 1, 2, 3, 9, 9, 8, 3, 2, 8, 3, 8, 6, 8, 5, 0, 5, 2, 9, 5, 7, 6, 9, 1, 8, 7, 0, 8, 3, 4, 3, 9, 9, 8, 8, 4, 7, 0, 3, 5, 4, 1, 3, 4, 6, 5, 1, 8, 3, 3, 4, 2, 5, 1, 6, 7, 1
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A091337 and s = 2.

Examples

			1 - 1/3^2 - 1/5^2 + 1/7^2 + 1/9^2 - 1/11^2 - 1/13^2 + 1/15^2 + ... = Pi^2/(8*sqrt(2)) = 0.8723580249...
		

Crossrefs

Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: A309710 (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), A328717 (d=5), this sequence (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^s: A196525 (s=1), this sequence (s=2), A329715 (s=3).

Programs

  • Mathematica
    RealDigits[Pi^2/(8*Sqrt[2]), 10, 102] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*sqrt(2))

Formula

Equals Pi^2/(8*sqrt(2)).
Equals (zeta(2,1/8) - zeta(2,3/8) - zeta(2,5/8) + zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^3) - polylog(2,-u) + polylog(2,-u^3))/sqrt(8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) - polygamma(1,3/8) - polygamma(1,5/8) + polygamma(1,7/8))/64.
Equals -Integral_{x=0..oo} log(x)/(x^4 + 1) dx. - Amiram Eldar, Jul 17 2020
Equals 1/(Product_{p prime == 1 or 7 (mod 8)} (1 - 1/p^2) * Product_{p prime == 3 or 5 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A328717 Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^2.

Original entry on oeis.org

7, 0, 6, 2, 1, 1, 4, 0, 3, 2, 5, 9, 7, 4, 0, 9, 6, 9, 9, 3, 1, 0, 0, 3, 1, 7, 5, 7, 6, 2, 5, 6, 4, 0, 2, 7, 6, 6, 0, 2, 4, 6, 4, 7, 1, 8, 5, 2, 9, 4, 6, 8, 6, 3, 9, 4, 2, 1, 1, 7, 4, 0, 2, 1, 6, 5, 6, 7, 7, 6, 0, 4, 4, 3, 8, 3, 8, 3, 0, 0, 7, 6, 8, 3, 3, 7, 4, 5, 6, 6, 4
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A080891 and s = 2.

Examples

			1 - 1/2^2 - 1/3^2 + 1/4^2 + 1/6^2 - 1/7^2 - 1/8^2 + 1/9^2 + ... = 4*Pi^2/(25*sqrt(5)) = 0.70621140325974096993100317576256402766024647185294...
		

Crossrefs

Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: A309710 (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), this sequence (d=5), A328895 (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^s: A086466 (s=1), this sequence (s=2), A328723 (s=3).

Programs

  • Mathematica
    RealDigits[4*Pi^2/(25*Sqrt[5]), 10, 102] // First
  • PARI
    default(realprecision, 100); 4*Pi^2/(25*sqrt(5))

Formula

Equals 4*Pi^2/(25*sqrt(5)).
Equals (zeta(2,1/5) - zeta(2,2/5) - zeta(2,3/5) + zeta(2,4/5))/25, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^2) - polylog(2,u^3) + polylog(2,u^4))/sqrt(5), where u = exp(2*Pi*i/5) is a 5th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/5) - polygamma(1,2/5) - polygamma(1,3/5) - polygamma(1,4/5))/25.
Equals Sum_{k>=1} Fibonacci(2*k)/(k^2*binomial(2*k,k)) = Sum_{k>=1} A001906(k)/A002736(k) (Seiffert, 1991). - Amiram Eldar, Jan 17 2022
Equals 1/(Product_{p prime == 1 or 4 (mod 5)} (1 - 1/p^2) * Product_{p prime == 2 or 3 (mod 5)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A124815 Expansion of q * psi(q)^2 * psi(-q^3)^2 * phi(-q^6) / phi(-q^2) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 12, 12, 14, 12, 12, 16, 16, 18, 18, 16, 18, 24, 24, 24, 21, 28, 27, 24, 28, 24, 30, 32, 36, 32, 24, 36, 38, 36, 42, 32, 40, 36, 42, 48, 36, 48, 48, 48, 43, 42, 48, 56, 52, 54, 48, 48, 54, 56, 60, 48, 62, 60, 54, 64, 56, 72, 66, 64, 72, 48, 72, 72
Offset: 1

Views

Author

Michael Somos, Nov 08 2006

Keywords

Comments

Number 24 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 3*q^3 + 4*q^4 + 4*q^5 + 6*q^6 + 6*q^7 + 8*q^8 + 9*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ n/d KroneckerSymbol[ 12, d], { d, Divisors[ n]}]]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^2]^2 QPochhammer[ q^3]^2 QPochhammer[ q^4] QPochhammer[ q^12]/QPochhammer[ q]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, n/d * kronecker( 12, d)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 12, p); (p^(e+1) - f^(e+1)) / (p - f)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^12 + A) / eta(x + A)^2, n))};

Formula

Expansion of (eta(q^2) * eta(q^3) / eta(q))^2 * eta(q^4) * eta(q^12) in powers of q.
Euler transform of period 12 sequence [ 2, 0, 0, -1, 2, -2, 2, -1, 0, 0, 2, -4, ...].
a(n) is multiplicative with a(p^e) = p^e if p<5, a(p^e) = (p^(e+1) - 1) / (p-1) if p == 1, 11 (mod 12), a(p^e) = (p^(e+1) + (-1)^e) / (p+1) if p == 5, 7 (mod 12).
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k)) / (1 - x^(2*k) + x^(4*k)).
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 - x^(3*k))^2 * (1 - x^(4*k)) * (1 - x^(12*k)).
a(2*n) = 2 * a(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^2/(6*sqrt(3)) = 0.949703... (A258414). - Amiram Eldar, Dec 22 2023

A309710 Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^2.

Original entry on oeis.org

1, 0, 6, 4, 7, 3, 4, 1, 7, 1, 0, 4, 3, 5, 0, 3, 3, 7, 0, 3, 9, 2, 8, 2, 7, 4, 5, 1, 4, 6, 1, 6, 6, 8, 8, 8, 9, 4, 8, 3, 0, 9, 9, 1, 5, 1, 7, 7, 4, 4, 8, 5, 1, 2, 4, 4, 1, 9, 8, 7, 4, 5, 0, 8, 0, 6, 3, 9, 9, 0, 1, 7, 1, 7, 5, 8, 6, 4, 3, 7, 6, 3, 6, 6, 6, 5, 3, 4, 2, 5, 0
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A188510 and s = 2.

Examples

			1 + 1/3^2 - 1/5^2 - 1/7^2 + 1/9^2 + 1/11^2 - 1/13^2 - 1/15^2 + ...= 1.0647341710...
		

Crossrefs

Cf. A188510.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: this sequence (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), A328717 (d=5), A328895 (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^s: A093954 (s=1), this sequence (s=2), A251809 (s=3).

Programs

  • Mathematica
    (PolyGamma[1, 1/8] + PolyGamma[1, 3/8] - PolyGamma[1, 5/8] - PolyGamma[1, 7/8])/64 // RealDigits[#, 10, 102] & // First

Formula

Equals (zeta(2,1/8) + zeta(2,3/8) - zeta(2,5/8) - zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) + polylog(2,u^3) - polylog(2,-u) - polylog(2,-u^3))/sqrt(-8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) + polygamma(1,3/8) - polygamma(1,5/8) - polygamma(1,7/8))/64.
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^2) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A346449 Decimal expansion of 257543 * Pi^8 / (1410877440 * sqrt(3)).

Original entry on oeis.org

9, 9, 9, 9, 9, 7, 2, 7, 2, 2, 3, 8, 9, 3, 0, 9, 4, 7, 1, 4, 6, 7, 8, 1, 8, 7, 4, 9, 6, 3, 7, 8, 3, 9, 2, 7, 2, 4, 4, 4, 8, 6, 2, 4, 9, 7, 0, 0, 5, 6, 5, 3, 4, 5, 7, 9, 3, 0, 8, 5, 0, 7, 8, 3, 0, 5, 4, 2, 6, 5, 2, 5, 4, 5, 2, 7, 8, 3, 4, 5, 4, 7, 4, 8, 1, 0, 3
Offset: 0

Views

Author

Sean A. Irvine, Jul 18 2021

Keywords

Comments

Note Shamos has a typo, 25743 instead of 257543.

Examples

			0.9999972722389309471467818749637839272444862497...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (329).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[11*13*1801*Pi^8/(2^11*3^9*5*7*Sqrt[3]),100]]] (* Stefano Spezia, Jul 19 2021 *)

Formula

Equals 11 * 13 * 1801 * Pi^8 / (2^11 * 3^9 * 5 * 7 * sqrt(3)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(6*k-1)^8 + (-1)^k/(6*k+1)^8 ).

A346450 Decimal expansion of 1681 * Pi^6 / (933120 * sqrt(3)).

Original entry on oeis.org

9, 9, 9, 9, 2, 8, 2, 1, 7, 8, 2, 5, 1, 0, 4, 4, 2, 1, 8, 0, 1, 4, 3, 3, 0, 5, 6, 2, 3, 0, 8, 9, 4, 0, 2, 6, 3, 7, 0, 9, 2, 5, 3, 5, 7, 8, 1, 3, 4, 7, 9, 1, 2, 3, 4, 4, 3, 6, 8, 9, 4, 3, 3, 7, 5, 7, 7, 2, 2, 7, 1, 9, 1, 9, 5, 2, 3, 1, 6, 7, 2, 8, 0, 9, 8, 8, 7
Offset: 0

Views

Author

Sean A. Irvine, Jul 18 2021

Keywords

Examples

			0.99992821782510442180143305623089402637...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (329).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[41^2*Pi^6/(2^8*3^6*5*Sqrt[3]),100]]] (* Stefano Spezia, Jul 19 2021 *)
    RealDigits[1681 Pi^6/(933120 Sqrt[3]),10,120][[1]] (* Harvey P. Dale, Oct 01 2023 *)

Formula

Equals 41^2 * Pi^6 / (2^8 * 3^6 * 5 * sqrt(3)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(6*k-1)^6 + (-1)^k/(6*k+1)^6 ).

A346451 Decimal expansion of 23 * Pi^4 / (1296 * sqrt(3)).

Original entry on oeis.org

9, 9, 8, 0, 7, 1, 5, 9, 9, 8, 3, 7, 9, 2, 8, 6, 8, 7, 3, 2, 9, 7, 0, 9, 6, 9, 8, 1, 2, 0, 2, 3, 4, 9, 5, 5, 7, 2, 5, 7, 8, 6, 6, 7, 7, 4, 4, 2, 0, 9, 0, 5, 1, 3, 1, 8, 0, 1, 1, 3, 7, 7, 6, 8, 6, 4, 0, 5, 6, 9, 7, 1, 9, 0, 0, 3, 2, 5, 3, 7, 1, 4, 5, 8, 2, 3, 6
Offset: 0

Views

Author

Sean A. Irvine, Jul 18 2021

Keywords

Examples

			0.99807159983792868732970969812...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (329).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[23*Pi^4/(2^4*3^4*Sqrt[3]),100]]] (* Stefano Spezia, Jul 19 2021 *)
    RealDigits[(23 Pi^4)/(1296 Sqrt[3]),10,120][[1]] (* Harvey P. Dale, Jun 20 2023 *)

Formula

Equals 23 * Pi^4 / (2^4 * 3^4 * sqrt(3)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(6*k-1)^4 + (-1)^k/(6*k+1)^4 ).

A329716 Decimal expansion of Sum_{k>=1} Kronecker(12,k)/k^3.

Original entry on oeis.org

9, 9, 0, 0, 4, 0, 0, 1, 9, 4, 3, 8, 1, 5, 9, 9, 4, 9, 7, 9, 1, 8, 1, 6, 7, 7, 6, 8, 6, 3, 3, 0, 4, 0, 5, 0, 8, 5, 6, 8, 8, 5, 0, 6, 7, 6, 5, 7, 2, 3, 6, 1, 4, 5, 5, 5, 3, 6, 6, 0, 7, 0, 0, 3, 4, 2, 3, 5, 2, 0, 5, 3, 3, 6, 7, 1, 8, 1, 1, 6, 7, 7, 8, 5, 6, 0, 2, 2, 3, 1, 8
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A110161 and s = 3.

Examples

			1 - 1/5^3 - 1/7^3 + 1/11^3 + 1/13^3 - 1/17^3 - 1/19^3 + 1/23^3 + ... = 0.9900400194...
		

Crossrefs

Cf. A110161.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^3, where d is a fundamental discriminant: A251809 (d=-8), A327135 (d=-7), A153071 (d=-4), A129404 (d=-3), A002117 (d=1), A328723 (d=5), A329715 (d=8), this sequence (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(12,k)/k^s: A196530 (s=1), A258414 (s=2), this sequence (s=3).

Programs

  • Mathematica
    (PolyGamma[2, 1/12] - PolyGamma[2, 5/12] - PolyGamma[2, 7/12] + PolyGamma[2, 11/12])/(-3456) // RealDigits[#, 10, 102] & // First

Formula

Equals (zeta(3,1/12) - zeta(3,5/12) - zeta(3,7/12) + zeta(3,11/12))/1728, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(3,u) - polylog(3,u^5) - polylog(3,-u) + polylog(3,-u^5))/sqrt(12), where u = (sqrt(3)+i)/2 is a 12th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/12) - polygamma(2,5/12) - polygamma(2,7/12) + polygamma(2,11/12))/(-3456).
Equals 1/(Product_{p prime == 1 or 11 (mod 12)} (1 - 1/p^3) * Product_{p prime == 5 or 7 (mod 12)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
Showing 1-10 of 11 results. Next