cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256130 Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 7, 1, 0, 7, 30, 33, 11, 1, 0, 11, 72, 130, 77, 16, 1, 0, 15, 160, 463, 438, 157, 22, 1, 0, 22, 351, 1557, 2216, 1223, 289, 29, 1, 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1, 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2015

Keywords

Comments

In general, column k>1 is asymptotic to c*k^n, where c = 1/(k!*Product_{n>=1} (1-1/k^n)) = 1/(k!*QPochhammer[1/k, 1/k]). - Vaclav Kotesovec, Jun 01 2015

Examples

			T(3,1) = 3: 1a1a1a, 2a1a, 3a.
T(3,2) = 4: 1a1a1b, 1a1b1a, 1a1b1b, 2a1b.
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,    1;
  0,  3,    4,     1;
  0,  5,   12,     7,     1;
  0,  7,   30,    33,    11,     1;
  0, 11,   72,   130,    77,    16,     1;
  0, 15,  160,   463,   438,   157,    22,    1;
  0, 22,  351,  1557,  2216,  1223,   289,   29,   1;
  0, 30,  743,  5031, 10422,  8331,  2957,  492,  37,  1;
  0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46,  1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A258457, A258458, A258459, A258460, A258461, A258462, A258463, A258464, A258465.
Row sums give A258466.
T(2n,n) give A258467.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)

Formula

T(n,k) = A255970(n,k)/k! = (Sum_{i=0..k} (-1)^i * C(k,i) * A246935(n,k-i)) / A000142(k).

A320548 Number of partitions of n into parts of exactly six sorts which are introduced in ascending order such that sorts of adjacent parts are different.

Original entry on oeis.org

1, 16, 157, 1223, 8331, 52078, 307123, 1738442, 9552826, 51357799, 271624228, 1418856967, 7341442171, 37708533544, 192586163135, 979219603193, 4961598120154, 25071026570558, 126410385741982, 636282269651863, 3198360710675384, 16059685006324807
Offset: 6

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=6 of A262495.
Cf. A258461.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(6):
    seq(a(n), n=6..40);

Formula

a(n) ~ 5^(n-1) / (5! * QPochhammer[1/5]). - Vaclav Kotesovec, Oct 25 2018
Showing 1-2 of 2 results.