A258466 Number of partitions of n into parts of sorts {1, 2, ... } which are introduced in ascending order.
1, 1, 3, 8, 25, 82, 307, 1256, 5688, 28044, 149598, 855811, 5217604, 33711592, 229798958, 1646312694, 12355368849, 96861178984, 791258781708, 6720627124140, 59234364096426, 540812222095821, 5106663817156741, 49798678280227488, 500857393908312587
Offset: 0
Keywords
Examples
a(3) = 8: 1a1a1a, 2a1a, 3a, 1a1a1b, 1a1b1a, 1a1b1b, 2a1b, 1a1b1c (in this example the sorts are labeled a, b, c).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k): a:= n-> add(T(n, k), k=0..n): seq(a(n), n=0..25);
-
Mathematica
Table[Plus @@ BellB /@ Length /@ IntegerPartitions[n], {n, 0, 24}] (* Gus Wiseman, Feb 17 2016 *) b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=0..n} A256130(n,k).
a(n) ~ Bell(n) = A000110(n). - Vaclav Kotesovec, Jun 01 2015
G.f.: Sum_{k>=0} Bell(k) * x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020
Comments