A258579 Triangle read by rows: T(n,k) = number of partial idempotent mappings (of an n-chain) with (right) waist exactly k.
1, 1, 1, 1, 2, 3, 1, 4, 7, 11, 1, 8, 17, 30, 48, 1, 16, 43, 86, 150, 241, 1, 32, 113, 258, 492, 846, 1358, 1, 64, 307, 806, 1686, 3108, 5276, 8445, 1, 128, 857, 2610, 6012, 11904, 21392, 35904, 57256, 1, 256, 2443, 8726, 22230, 47376, 90224, 158880, 263976, 419233
Offset: 0
Examples
T(3,2) = 7 because there are exactly 7 partial idempotent mappings (of a 3-chain) with right waist exactly 2, namely: (123-->222), (123-->122), (123-->121), (12-->22), (12-->12), (23-->22), (2-->2). Triangle starts: 1; 1,1; 1,2,3; 1,4,7,11; 1,8,17,30,48; ...
References
- F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).
Programs
-
PARI
mybinom(x,y) = if ((x==-1) && (y==-1), 1, binomial(x,y)); tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(m=0, k, mybinom(k-1, m-1) * (m+1)^(n-m)), ", "); ); print(); ); } \\ Michel Marcus, Jul 15 2015
Formula
T(n,k) = Sum_{m=0..k} binomial(k-1,m-1) * (m+1)^(n-m).