cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258579 Triangle read by rows: T(n,k) = number of partial idempotent mappings (of an n-chain) with (right) waist exactly k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 4, 7, 11, 1, 8, 17, 30, 48, 1, 16, 43, 86, 150, 241, 1, 32, 113, 258, 492, 846, 1358, 1, 64, 307, 806, 1686, 3108, 5276, 8445, 1, 128, 857, 2610, 6012, 11904, 21392, 35904, 57256, 1, 256, 2443, 8726, 22230, 47376, 90224, 158880, 263976, 419233
Offset: 0

Views

Author

Wafa AlNadabi, Jul 04 2015

Keywords

Examples

			T(3,2) = 7 because there are exactly 7 partial idempotent mappings (of a 3-chain) with right waist exactly 2, namely: (123-->222), (123-->122), (123-->121), (12-->22), (12-->12), (23-->22), (2-->2).
Triangle starts:
1;
1,1;
1,2,3;
1,4,7,11;
1,8,17,30,48;
...
		

References

  • F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).

Programs

  • PARI
    mybinom(x,y) = if ((x==-1) && (y==-1), 1, binomial(x,y));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(m=0, k, mybinom(k-1, m-1) * (m+1)^(n-m)), ", "); ); print(); ); } \\ Michel Marcus, Jul 15 2015

Formula

T(n,k) = Sum_{m=0..k} binomial(k-1,m-1) * (m+1)^(n-m).