cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Wafa AlNadabi

Wafa AlNadabi's wiki page.

Wafa AlNadabi has authored 3 sequences.

A258579 Triangle read by rows: T(n,k) = number of partial idempotent mappings (of an n-chain) with (right) waist exactly k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 4, 7, 11, 1, 8, 17, 30, 48, 1, 16, 43, 86, 150, 241, 1, 32, 113, 258, 492, 846, 1358, 1, 64, 307, 806, 1686, 3108, 5276, 8445, 1, 128, 857, 2610, 6012, 11904, 21392, 35904, 57256, 1, 256, 2443, 8726, 22230, 47376, 90224, 158880, 263976, 419233
Offset: 0

Author

Wafa AlNadabi, Jul 04 2015

Keywords

Examples

			T(3,2) = 7 because there are exactly 7 partial idempotent mappings (of a 3-chain) with right waist exactly 2, namely: (123-->222), (123-->122), (123-->121), (12-->22), (12-->12), (23-->22), (2-->2).
Triangle starts:
1;
1,1;
1,2,3;
1,4,7,11;
1,8,17,30,48;
...
		

References

  • F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).

Programs

  • PARI
    mybinom(x,y) = if ((x==-1) && (y==-1), 1, binomial(x,y));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(m=0, k, mybinom(k-1, m-1) * (m+1)^(n-m)), ", "); ); print(); ); } \\ Michel Marcus, Jul 15 2015

Formula

T(n,k) = Sum_{m=0..k} binomial(k-1,m-1) * (m+1)^(n-m).

A259759 Triangle read by rows: T(n,k) = number of partial idempotent mappings (of an n-chain) with collapse exactly k.

Original entry on oeis.org

1, 2, 0, 4, 0, 2, 8, 0, 12, 3, 16, 0, 48, 24, 16, 32, 0, 160, 120, 160, 65, 64, 0, 480, 480, 960, 780, 336, 128, 0, 1344, 1680, 4480, 5460, 4704, 1897, 256, 0, 3584, 5376, 17920, 29120, 37632, 30352, 11824, 512, 0, 9216, 16128, 64512, 131040, 225792, 273168, 212832, 80145
Offset: 0

Author

Wafa AlNadabi, Jul 04 2015

Keywords

Examples

			T (3,2) = 12 because there are exactly 12 partial idempotent mappings (of a 3-chain) with collapse exactly 2, namely: (123-->113), (123-->121), (123-->122), (123-->223), (123-->133), (123--> 323), (12-->11), (12-->22), (23-->22), (23-->33), (13-->11), (13-->33).
Triangle starts:
1;
2,0;
4,0,2;
8,0,12,3;
16,0,48,24,16;
...
		

References

  • F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).

Programs

  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)*sum(r=k, n, binomial(n-k,r-k)*sum(j=0, k, binomial(k,j)*stirling(k-j,j,2)*j!)), ", ");); print(););} \\ Michel Marcus, Jul 15 2015

Formula

T(n,k) = binomial(n,k)Sum_{r=k}^n binomial(n-k,r-k)Sum_{j=0}^k binomial(k,j)S(k-j,j)j!, where S (x,y) is the Stirling numbers of the second kind, which gives the number of ways to partition x into y nonempty subsets.

Extensions

More terms from Michel Marcus, Jul 15 2015

A259760 Triangle read by rows: T(n,k) is the number of partial idempotent mappings (of an n-chain) with breadth exactly k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 10, 1, 4, 18, 40, 41, 1, 5, 30, 100, 205, 196, 1, 6, 45, 200, 615, 1176, 1057, 1, 7, 63, 350, 1435, 4116, 7399, 6322, 1, 8, 84, 560, 2870, 10976, 29596, 50576, 41393, 1, 9, 108, 840, 5166, 24696, 88788, 227592, 372537, 293608
Offset: 0

Author

Wafa AlNadabi, Jul 04 2015

Keywords

Examples

			T(3,2) = 9 because there are exactly 9 partial idempotent mappings (of a 3-chain) with breadth exactly 2, namely: (12-->11), (12-->22), (12-->12), (13-->11), (13-->33), (13-->13), (23-->22), (23-->33), (23-->23).
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 10;
1, 4, 18, 40, 41;
...
		

References

  • F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).

Crossrefs

Row sums give A080108(n+1).

Programs

  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)*sum(m=0, k, binomial(k,m)*m^(k-m)), ", ");); print(););} \\ Michel Marcus, Jul 15 2015

Formula

T(n,k) = binomial(n,k) * Sum_{m=0..k} binomial(k,m)*m^(k-m).

Extensions

More terms from Michel Marcus, Jul 15 2015