A258584 Numbers n such that n = Sum_{j>=1} c(j) where c(0) = n, c(j) = floor(c(j-1)/10^k)*(c(j-1) mod 10^k) for j>0, and k is half the number of digits of n, rounded up if the number of digits of n is odd.
86, 860, 1975, 2160, 3575, 19750, 21600, 35750, 43614, 51884, 65625, 479900, 868688, 967750, 1435575, 1548384, 1696875, 4799000, 8686880, 9677500, 28874200, 34095100, 38748800, 39214560, 47613625, 53415625, 148385715, 156293216, 288742000, 340951000, 387488000
Offset: 1
Examples
86 is in the sequence because 8*6 = 48, 4*8 = 32 and 3*2 = 6. And 86 = 48 + 32 + 6.
Programs
-
Mathematica
fQ[n_] := Block[{i = Ceiling[IntegerLength[n]/2], g}, g[x_] := If[IntegerLength@ x <= i, x, Times @@ (FromDigits /@ {If[IntegerLength@ x - i == 0, Nothing, Take[IntegerDigits@ x, IntegerLength@ x - i]], Take[IntegerDigits@ x, -i]})]; Total@ Rest@ Most@ FixedPointList[g, n] == n]; Select[Range@ 500000, fQ] (* Michael De Vlieger, Nov 06 2015 *)
-
Python
def pod(n, m): kk = 1 while n > 0: kk= kk*(n%m) n =int(n//m) return kk for b in range(0, 6): dd, bb=0, (b-1)//2+2 j=10**bb for c in range (10*j, 100*j): d, a, ca=0, 0, pod(c, j) while ca>0: d, a=d+ca, a+1 if ca
Extensions
a(21)-a(31) from Jon E. Schoenfield, Nov 07 2015
Obsolete b-file deleted by N. J. A. Sloane, Jan 05 2019
Comments