cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258597 a(n) = 13*3^n.

Original entry on oeis.org

13, 39, 117, 351, 1053, 3159, 9477, 28431, 85293, 255879, 767637, 2302911, 6908733, 20726199, 62178597, 186535791, 559607373, 1678822119, 5036466357, 15109399071, 45328197213, 135984591639, 407953774917, 1223861324751, 3671583974253, 11014751922759
Offset: 0

Views

Author

Vincenzo Librandi, Jun 05 2015

Keywords

Comments

Also maximum leaf number of the (n+3)-Apollonian network for n >= 0. - Eric W. Weisstein, Jan 17 2018

Crossrefs

Cf. k*3^n: A000244 (k=1,3,9), A008776 (k=2,6), A003946 (k=4), A005030 (k=5), A005032 (k=7), A005051 (k=8), A005052 (k=10), A120354 (k=11), A003946 (k=12), this sequence (k=13), A258598 (k=17), A176413 (k=19).

Programs

  • Magma
    [13*3^n: n in [0..30]];
  • Mathematica
    Table[13 3^n, {n, 0, 30}]
    13 3^Range[0, 20] (* Eric W. Weisstein, Jan 17 2018 *)
    LinearRecurrence[{3}, {13}, 20] (* Eric W. Weisstein, Jan 17 2018 *)
    CoefficientList[Series[13/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 17 2018 *)

Formula

G.f.: 13/(1-3*x).
a(n) = 3*a(n-1).
a(n) = 13*A000244(n).
E.g.f.: 13*exp(3*x). - Elmo R. Oliveira, Aug 16 2024