A258597 a(n) = 13*3^n.
13, 39, 117, 351, 1053, 3159, 9477, 28431, 85293, 255879, 767637, 2302911, 6908733, 20726199, 62178597, 186535791, 559607373, 1678822119, 5036466357, 15109399071, 45328197213, 135984591639, 407953774917, 1223861324751, 3671583974253, 11014751922759
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Apollonian Network
- Eric Weisstein's World of Mathematics, Maximum Leaf Number
- Index entries for linear recurrences with constant coefficients, signature (3).
Crossrefs
Programs
-
Magma
[13*3^n: n in [0..30]];
-
Mathematica
Table[13 3^n, {n, 0, 30}] 13 3^Range[0, 20] (* Eric W. Weisstein, Jan 17 2018 *) LinearRecurrence[{3}, {13}, 20] (* Eric W. Weisstein, Jan 17 2018 *) CoefficientList[Series[13/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 17 2018 *)
Formula
G.f.: 13/(1-3*x).
a(n) = 3*a(n-1).
a(n) = 13*A000244(n).
E.g.f.: 13*exp(3*x). - Elmo R. Oliveira, Aug 16 2024
Comments