cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258603 a(n) is the index m such that A069493(m) = prime(n)^6.

Original entry on oeis.org

2, 6, 13, 22, 45, 58, 87, 102, 135, 181, 199, 252, 287, 306, 342, 401, 461, 479, 536, 583, 602, 665, 712, 776, 860, 911, 932, 975, 997, 1051, 1212, 1258, 1331, 1356, 1479, 1502, 1580, 1651, 1705, 1784, 1856, 1879, 2013, 2037, 2093, 2113, 2272, 2438, 2484, 2510
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069493(a(n)) = A030516(n) = prime(n)^6;
A069493(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258571(m) = prime(n):
A258571(a(n)) = A000040(n) and A258571(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069493(a(n)) = A030516(n) = p^6
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            64
.   2 |  3 |     6 |           729
.   3 |  5 |    13 |         15625
.   4 |  7 |    22 |        117649
.   5 | 11 |    45 |       1771561
.   6 | 13 |    58 |       4826809
.   7 | 17 |    87 |      24137569
.   8 | 19 |   102 |      47045881
.   9 | 23 |   135 |     148035889
.  10 | 29 |   181 |     594823321
.  11 | 31 |   199 |     887503681
.  12 | 37 |   252 |    2565726409
.  13 | 41 |   287 |    4750104241
.  14 | 43 |   306 |    6321363049
.  15 | 47 |   342 |   10779215329
.  16 | 53 |   401 |   22164361129
.  17 | 59 |   461 |   42180533641
.  18 | 61 |   479 |   51520374361
.  19 | 67 |   536 |   90458382169
.  20 | 71 |   583 |  128100283921
.  21 | 73 |   602 |  151334226289
.  22 | 79 |   665 |  243087455521
.  23 | 83 |   712 |  326940373369
.  24 | 89 |   776 |  496981290961
.  25 | 97 |   860 |  832972004929  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^6,6) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258603(n):
        c, m = 0, prime(n)**6
        for y1 in range(1,integer_nthroot(m,11)[0]+1):
            if all(d<=1 for d in factorint(y1).values()):
                for y2 in range(1,integer_nthroot(z2:=m//y1**11,10)[0]+1):
                    if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                        for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                            if all(gcd(y3,x)==1 for x in (y1,y2)) and all(d<=1 for d in factorint(y3).values()):
                                for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                    if all(gcd(y4,x)==1 for x in (y1,y2,y3)) and all(d<=1 for d in factorint(y4).values()):
                                        for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                            if all(gcd(y5,x)==1 for x in (y1,y2,y3,y4)) and all(d<=1 for d in factorint(y5).values()):
                                                c += integer_nthroot(z5//y5**7,6)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024