A258603 a(n) is the index m such that A069493(m) = prime(n)^6.
2, 6, 13, 22, 45, 58, 87, 102, 135, 181, 199, 252, 287, 306, 342, 401, 461, 479, 536, 583, 602, 665, 712, 776, 860, 911, 932, 975, 997, 1051, 1212, 1258, 1331, 1356, 1479, 1502, 1580, 1651, 1705, 1784, 1856, 1879, 2013, 2037, 2093, 2113, 2272, 2438, 2484, 2510
Offset: 1
Keywords
Examples
. n | p | a(n) | A069493(a(n)) = A030516(n) = p^6 . ----+----+-------+--------------------------------- . 1 | 2 | 2 | 64 . 2 | 3 | 6 | 729 . 3 | 5 | 13 | 15625 . 4 | 7 | 22 | 117649 . 5 | 11 | 45 | 1771561 . 6 | 13 | 58 | 4826809 . 7 | 17 | 87 | 24137569 . 8 | 19 | 102 | 47045881 . 9 | 23 | 135 | 148035889 . 10 | 29 | 181 | 594823321 . 11 | 31 | 199 | 887503681 . 12 | 37 | 252 | 2565726409 . 13 | 41 | 287 | 4750104241 . 14 | 43 | 306 | 6321363049 . 15 | 47 | 342 | 10779215329 . 16 | 53 | 401 | 22164361129 . 17 | 59 | 461 | 42180533641 . 18 | 61 | 479 | 51520374361 . 19 | 67 | 536 | 90458382169 . 20 | 71 | 583 | 128100283921 . 21 | 73 | 602 | 151334226289 . 22 | 79 | 665 | 243087455521 . 23 | 83 | 712 | 326940373369 . 24 | 89 | 776 | 496981290961 . 25 | 97 | 860 | 832972004929 .
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a258603 = (+ 1) . fromJust . (`elemIndex` a258571_list) . a000040
-
PARI
\\ Gen(limit,k) defined in A036967. a(n)=#Gen(prime(n)^6,6) \\ Andrew Howroyd, Sep 10 2024
-
Python
from math import gcd from sympy import prime, integer_nthroot, factorint def A258603(n): c, m = 0, prime(n)**6 for y1 in range(1,integer_nthroot(m,11)[0]+1): if all(d<=1 for d in factorint(y1).values()): for y2 in range(1,integer_nthroot(z2:=m//y1**11,10)[0]+1): if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()): for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1): if all(gcd(y3,x)==1 for x in (y1,y2)) and all(d<=1 for d in factorint(y3).values()): for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1): if all(gcd(y4,x)==1 for x in (y1,y2,y3)) and all(d<=1 for d in factorint(y4).values()): for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1): if all(gcd(y5,x)==1 for x in (y1,y2,y3,y4)) and all(d<=1 for d in factorint(y5).values()): c += integer_nthroot(z5//y5**7,6)[0] return c # Chai Wah Wu, Sep 10 2024
Extensions
a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024
Comments