cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256357 L.g.f.: log( 1 + Sum_{n>=1} x^(n^2) + x^(2*n^2) ).

Original entry on oeis.org

1, 1, -2, 5, -4, -2, 8, -3, 7, -4, -10, 14, -12, 8, 8, -19, 18, 7, -18, 20, -16, -10, 24, -18, 21, -12, -20, 40, -28, 8, 32, -51, 20, 18, -32, 59, -36, -18, 24, -28, 42, -16, -42, 38, -28, 24, 48, -82, 57, 21, -36, 44, -52, -20, 40, -24, 36, -28, -58, 104, -60, 32, 56, -115, 48, 20, -66, 90, -48, -32, 72, -45, 74, -36, -42, 62, -80, 24, 80, -124, 61, 42, -82, 112, -72, -42, 56, -58, 90, -28, -96, 120, -64, 48, 72, -210, 98, 57, -70, 145, -100, -36, 104, -68, 64, -52, -106, 140, -108, 40, 72, -152, 114, 36, -96, 92, -84, -58, 144, -88, 111
Offset: 1

Views

Author

Paul D. Hanna, Jun 03 2015

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 - 2*x^3/3 + 5*x^4/4 - 4*x^5/5 - 2*x^6/6 + 8*x^7/7 - 3*x^8/8 + 7*x^9/9 - 4*x^10/10 - 10*x^11/11 + 14*x^12/12 - 12*x^13/13 + 8*x^14/14 + 8*x^15/15 - 19*x^16/16 +...+ a(n)*x^n/n +...
where
exp(L(x)) = 1 + x + x^2 + x^4 + x^8 + x^9 + x^16 + x^18 + x^25 + x^32 + x^36 + x^49 + x^50 + x^64 + x^72 + x^81 + x^98 + x^100 +...+ x^A028982(n) +...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(L=x); L = log(1 + sum(k=1,sqrtint(n+1), x^(k^2) + x^(2*k^2)) +x*O(x^n)); n*polcoeff(L,n)}
    for(n=1,121, print1(a(n),", "))
    
  • PARI
    {a(n) = -sigma(n) + sumdiv(n,d, if(d%4==2,d)) + 2*sumdiv(n,d, if((d%8)%3==1,d))}
    for(n=1,121, print1(a(n),", "))
    
  • PARI
    {a(n) = local(L, X=x+x*O(x^n)); L = sum(m=0,n\8+1, log( (1-x^(3+8*m))*(1-x^(5+8*m))*(1-x^(8+8*m)) / ( (1-x^(1+8*m))*(1-x^(4+8*m))*(1-x^(7+8*m) +x*O(x^n)) ))); n*polcoeff(L,n)}
    for(n=1,121, print1(a(n),", "))

Formula

L.g.f.: Sum_{n>=0} log( (1-x^(3+8*n))*(1-x^(5+8*n))*(1-x^(8+8*n)) / ( (1-x^(1+8*n))*(1-x^(4+8*n))*(1-x^(7+8*n)) ) ). [See Cooper and Hirschhorn reference]
From formulas given by Michael Somos in A093709: (Start)
L.g.f.: log( (theta_3(x) + theta_3(x^2)) / 2).
L.g.f.: Log( psi(q^4) * f(-q^3, -q^5) / f(-q, -q^7) ) in powers of q where psi(), f() are Ramanujan theta functions.
L.g.f.: Log( f(-q^3, -q^5)^2 / psi(-q) ) in powers of q where psi(), f() are Ramanujan theta functions.
(End)
a(n) == 1 (mod 2) iff n is a square or twice square (A028982).
a(n) = -sigma(n) + [Sum_{d|n, d==2 (mod 4)} d] + [Sum_{d|n, d==1,4,7 (mod 8)} 2*d].

A258656 O.g.f.: exp( Sum_{n>=1} A256357(n^2)*x^n/n ), where exp( Sum_{n>=1} A256357(n)*x^n/n ) = 1 + Sum_{n>=1} x^(n^2) + x^(2*n^2).

Original entry on oeis.org

1, 1, 3, 5, 2, 10, 13, 23, 43, 57, 66, 96, 183, 229, 375, 509, 619, 883, 1395, 1947, 2487, 3603, 4627, 6273, 8934, 12432, 15637, 20943, 29147, 37613, 50296, 67870, 88542, 113240, 153682, 201900, 257125, 338397, 446354, 570098, 734576, 966634, 1234879, 1574763, 2048746, 2634002, 3322639, 4268611
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2015

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 2*x^4 + 10*x^5 + 13*x^6 + 23*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 7*x^3/3 - 19*x^4/4 + 21*x^5/5 + 59*x^6/6 + 57*x^7/7 - 115*x^8/8 + 61*x^9/9 + 145*x^10/10 +...+ A256357(n^2)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {A258655(n) = local(L=x); L = log(1 + sum(k=1, n+1, x^(k^2) + x^(2*k^2)) +x*O(x^(n^2))); n^2*polcoeff(L, n^2)}
    {a(n) = polcoeff( exp( sum(k=1,n+1, A258655(k)*x^k/k) +x*O(x^n) ), n)}
    for(n=1, 121, print1(a(n), ", "))
    
  • PARI
    /* Much faster: */
    {A258655(n) = -sigma(n^2) + sumdiv(n^2, d, if(d%4==2, d)) + 2*sumdiv(n^2, d, if((d%8)%3==1, d))}
    {a(n) = polcoeff( exp( sum(k=1,n+1, A258655(k)*x^k/k) +x*O(x^n) ), n)}
    for(n=1,121, print1(a(n), ", "))
Showing 1-2 of 2 results.