A258683 Total number of permutations on {1,2,...,n} that have a unique longest increasing subsequence and a unique longest decreasing subsequence.
1, 0, 0, 0, 2, 16, 120, 938, 8014, 74060, 748628, 8163156, 96429784
Offset: 1
Examples
the two permutation of {1,2,...,5}: {2, 5, 3, 1, 4} {4, 1, 3, 5, 2} 8 of the 16 permutations of {1,2,...,6} (others reversed): {1, 3, 6, 4, 2, 5} {1, 5, 2, 4, 6, 3} {2, 3, 6, 4, 1, 5} {2, 5, 3, 1, 4, 6} {2, 6, 3, 1, 4, 5} {2, 6, 5, 3, 1, 4} {3, 6, 4, 2, 1, 5} {3, 6, 4, 2, 5, 1}
Links
- Manfred Scheucher, C Code
Programs
-
Sage
def A258683(n): return len([p for p in permutations(n) if len(p.longest_increasing_subsequences())* len(p.reverse().longest_increasing_subsequences())==1]) # Manfred Scheucher, Jun 07 2015
Comments