cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258706 Absolute primes: every permutation of digits is a prime. Only the smallest representative of each permutation class is shown.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 199, 337, 1111111111111111111, 11111111111111111111111
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2015

Keywords

Comments

See the main entry, A003459, for further information and references cited below.
The next terms are the repunit primes (A004023) R(317), too large to be displayed here, and R(1031), too large even for a b-file. Johnson (1977) proves that subsequent terms must be of the form a*R(n) + b*10^k, with a and a+b in {1..9}, k < n, and n > 9*10^9 if b != 0. - M. F. Hasler, Jun 26 2018

Crossrefs

Cf. A003459, A004023, A004022 (subsequence of repunit primes).

Programs

  • Haskell
    import Data.List (permutations, (\\))
    a258706 n = a258706_list !! (n-1)
    a258706_list = f a000040_list where
       f ps'@(p:ps) | any (== 0) (map a010051' dps) = f ps
                    | otherwise = p : f (ps' \\ dps)
                    where dps = map read $ permutations $ show p
    -- Reinhard Zumkeller, Jun 10 2015
    
  • Mathematica
    Flatten@{2, 3, 5, 7,
      Table[Select[
        Table @@
          Prepend[Prepend[
            Table[{A@k, A[k - 1], 4}, {k, 2, n}], {A[1], 4}],
           Unevaluated[
            Unevaluated[FromDigits[{1, 3, 7, 9}[[A /@ Range[n]]]]]]] //
         Flatten,
        Function[L,
           And[PrimeQ[#],
            And @@ PrimeQ[
              FromDigits /@ (Permute[L, #] & /@
                 RandomPermutation[Length@L, 5])],
            And @@ PrimeQ[FromDigits /@ Rest[Permutations[L]]]]]@
          IntegerDigits@# &], {n, 2, 33}]}
    (* Exhaustively searches thru 33 digits in ~7.5 sec, and up to 69 digits in 5 min, but cannot reach 317 digits. Not helpful in the light of Schroeppel's theorem that it's all repunits past 991. - Bill Gosper, Jan 06 2017 *)
  • PARI
    {A=[2,5]; for(n=1, 317, my(D=[1,3,7,9], r=10^n\9); for(a=1,4, for(b=a^(n<3),4, for(j=0, if(b!=a,n-1), ispseudoprime(D[a]*r+(D[b]-D[a])*10^j)||next(2)); A=setunion(A, [r*D[a]+(D[b]-D[a])*10^if(b=n[1] && #select(d->d,n[^1]-n[^-1])<2 && !for(i=1,(#n)^(n[#n]>1), isprime(fromdigits(n=concat(n[^1],n[1])))||return)} \\ By Johnson's theorem and minimality required here, the number must be of the form ab...b or a...ab (=> first difference of digits has at most 1 nonzero component) and then is sufficient to consider rotations of the digits.
    \\ M. F. Hasler, Jun 26 2018