cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258721 a(n) = 24*n^2 + 52*n + 29.

Original entry on oeis.org

29, 105, 229, 401, 621, 889, 1205, 1569, 1981, 2441, 2949, 3505, 4109, 4761, 5461, 6209, 7005, 7849, 8741, 9681, 10669, 11705, 12789, 13921, 15101, 16329, 17605, 18929, 20301, 21721, 23189, 24705, 26269, 27881, 29541, 31249, 33005, 34809, 36661, 38561, 40509
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 08 2015

Keywords

Comments

First differences of A079588.
6*a(n) - 5 is a square. Therefore, this is the quadrisection of the sequence which lists the numbers m such that 6*m-5 is a square (without 1): 1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, ... . [Bruno Berselli, Jun 08 2015]

Crossrefs

Cf. A079588.

Programs

  • Haskell
    a258721 n = 4 * n * (6 * n + 13) + 29
    
  • Magma
    [24*n^2+52*n+29: n in (0..50)] // Bruno Berselli, Jun 08 2015
    
  • Mathematica
    Table[24 n^2 + 52 n + 29, {n, 0, 50}] (* Bruno Berselli, Jun 08 2015 *)
  • Maxima
    makelist(24*n^2+52*n+29, n, 0, 50); /* Bruno Berselli, Jun 08 2015 */
  • PARI
    vector(50, n, n--; 24*n^2+52*n+29) \\ Bruno Berselli, Jun 08 2015
    
  • Sage
    [24*n^2+52*n+29 for n in (0..50)] # Bruno Berselli, Jun 08 2015
    

Formula

G.f.: (29 + 18*x + x^2)/(1 - x)^3.