A258773 Triangle read by rows, T(n,k) = (-1)^(n-k)*C(n,k)*k^n, for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, -2, 4, 0, 3, -24, 27, 0, -4, 96, -324, 256, 0, 5, -320, 2430, -5120, 3125, 0, -6, 960, -14580, 61440, -93750, 46656, 0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543, 0, -8, 7168, -367416, 4587520, -21875000, 47029248, -46118408, 16777216
Offset: 0
Examples
Triangle begins: [1] [0, 1] [0, -2, 4] [0, 3, -24, 27] [0, -4, 96, -324, 256] [0, 5, -320, 2430, -5120, 3125] [0, -6, 960, -14580, 61440, -93750, 46656] [0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1326
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
Programs
-
Maple
seq(seq((-1)^(n-k)*binomial(n, k)*k^n, k=0..n), n=0..8); T_row := proc(n) (-1)^n*(1-exp(x))^n/n!; diff(%,[x$n]); subs(exp(x)=t, n!*expand(%,x)); CoefficientList(%,t) end: seq(print(T_row(n)), n=0..7);
-
Mathematica
Flatten@Table[(-1)^(n - k) Binomial[n, k] k^n, {n, 0 , 10}, {k, 0, n}] (* G. C. Greubel, Dec 17 2015 *)
Formula
Sum_{k=0..n} T(n,k) = n!.
Sum_{k=0..n} |T(n,k)| = A072034(n).
Sum_{n>=0} Sum_{k=0..n} T(n,k) x^k y^n/n! = 1/(1 + W(-x*y*exp(-y))) where W is the Lambert W function. - Robert Israel, Dec 16 2015
T(n,n) = A000312(n). - Peter Luschny, Dec 17 2015
T(n, k+1) = n * A075513(n, k) if n > 0. - Michael Somos, May 13 2018
Comments