A258829 Number T(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 11, 3, 1, 0, 16, 38, 28, 4, 1, 0, 61, 263, 130, 62, 5, 1, 0, 272, 1260, 1263, 340, 129, 6, 1, 0, 1385, 10871, 8090, 4734, 819, 261, 7, 1, 0, 7936, 66576, 88101, 33855, 16066, 1890, 522, 8, 1, 0, 50521, 694599, 724189, 495371, 127538, 52022, 4260, 1040, 9, 1
Offset: 0
Examples
p = 1432 is counted by T(4,2) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0. q = 4321 is not counted by any T(4,k) because the up-down signature of 0,q = 04321 is 1,-1,-1,-1 with partial sums 1,0,-1,-2. T(4,1) = 5: 2143, 3142, 3241, 4132, 4231. T(4,2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123. T(4,3) = 3: 1243, 1342, 2341. T(4,4) = 1: 1234. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 11, 3, 1; 0, 16, 38, 28, 4, 1; 0, 61, 263, 130, 62, 5, 1; 0, 272, 1260, 1263, 340, 129, 6, 1; 0, 1385, 10871, 8090, 4734, 819, 261, 7, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, c, k) option remember; `if`(c<0 or c>k, 0, `if`(u+o=0, 1, add(b(u-j, o-1+j, c+1, k), j=1..u)+ add(b(u+j-1, o-j, c-1, k), j=1..o))) end: A:= (n, k)-> b(n, 0$2, k): T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]]; A[n_, k_] := b[n, 0, 0, k]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)