cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258833 Nonhomogeneous Beatty sequence: ceiling((n + 1/4)*sqrt(2)).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93
Offset: 0

Views

Author

Clark Kimberling, Jun 12 2015

Keywords

Comments

Complement of A258834.
Let r = sqrt(2) and s = r/(r-1) = 2 + sqrt(2). Let R be the ordered set {floor[(n + 1/4)*r] : n is an integer} and let S be the ordered set {floor[(n - 1/4)*s : n is an integer}; thus,
R = (..., -8, -7, -5, -4, -2, -1, 1, 2, 3, 5, 6, ...)
S = (..., -13, -10, -6, -3, 0, 4, 7, 11, 14, ...).
By Fraenkel's theorem (Theorem XI in the cited paper); R and S partition the integers.
A184580 = (1,2,3,5,6,...), positive terms of R;
A184581 = (4,7,11,14,...), positive terms of S;
A258833 = (1,2,4,5,7,...), - (negative terms of R);
A258834 = (0,3,6,10,...), - (nonpositive terms of S).
A184580 and A184581 partition the positive integers, and A258833 and A258834 partition the nonnegative integers.

Crossrefs

Cf. A258834 (complement), A184580, A184581.

Programs

  • Magma
    [Ceiling((n + 1/4)*Sqrt(2)): n in [0..80]]; // Vincenzo Librandi, Jun 13 2015
    
  • Mathematica
    r = Sqrt[2]; s = r/(r - 1);
    Table[Ceiling[(n + 1/4) r], {n, 0, 100}] (* A258833 *)
    Table[Ceiling[(n - 1/4) s], {n, 0, 100}] (* A258834 *)
  • PARI
    for(n=0,50, print1(ceil((n + 1/4)*sqrt(2)), ", ")) \\ G. C. Greubel, Feb 08 2018

Formula

a(n) = ceiling((n + 1/4)*sqrt(2)) = floor((n + 1/4)*sqrt(2) + 1).