A258833 Nonhomogeneous Beatty sequence: ceiling((n + 1/4)*sqrt(2)).
1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 25, 26, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
- A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27.
- Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
Programs
-
Magma
[Ceiling((n + 1/4)*Sqrt(2)): n in [0..80]]; // Vincenzo Librandi, Jun 13 2015
-
Mathematica
r = Sqrt[2]; s = r/(r - 1); Table[Ceiling[(n + 1/4) r], {n, 0, 100}] (* A258833 *) Table[Ceiling[(n - 1/4) s], {n, 0, 100}] (* A258834 *)
-
PARI
for(n=0,50, print1(ceil((n + 1/4)*sqrt(2)), ", ")) \\ G. C. Greubel, Feb 08 2018
Formula
a(n) = ceiling((n + 1/4)*sqrt(2)) = floor((n + 1/4)*sqrt(2) + 1).
Comments