A258834 Nonhomogeneous Beatty sequence: a(n) = ceiling((n - 1/4)*(2 + sqrt(2))).
0, 3, 6, 10, 13, 17, 20, 24, 27, 30, 34, 37, 41, 44, 47, 51, 54, 58, 61, 65, 68, 71, 75, 78, 82, 85, 88, 92, 95, 99, 102, 105, 109, 112, 116, 119, 123, 126, 129, 133, 136, 140, 143, 146, 150, 153, 157, 160, 164, 167, 170, 174, 177, 181, 184, 187, 191, 194
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
- Aviezri S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27.
- Clark Kimberling, Beatty sequences and trigonometric functions, Integers 16 (2016), #A15.
Programs
-
Magma
[Ceiling((n-1/4)*(2+Sqrt(2))): n in [0..80]]; // Vincenzo Librandi, Jun 13 2015
-
Mathematica
r = Sqrt[2]; s = r/(r - 1); Table[Ceiling[(n + 1/4) r], {n, 0, 100}] (* A258833 *) Table[Ceiling[(n - 1/4) s], {n, 0, 100}] (* A258834 *)
-
PARI
vector(60, n, ceil((n-1/4)*(2+sqrt(2)))) \\ G. C. Greubel, Aug 19 2018
Formula
a(n) = ceiling((n - 1/4)*(2 + sqrt(2))) = floor((n - 1/4)*(2 + sqrt(2)) + 1).
Extensions
Corrected by Michel Dekking, Sep 19 2019
Comments