cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258835 Expansion of psi(x)^3 * psi(x^4) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 3, 4, 7, 6, 9, 13, 9, 10, 15, 15, 13, 19, 18, 16, 30, 21, 19, 27, 21, 31, 31, 24, 25, 39, 33, 28, 48, 30, 35, 54, 33, 34, 52, 42, 45, 51, 39, 45, 55, 51, 50, 70, 45, 46, 78, 48, 54, 80, 57, 63, 78, 54, 55, 75, 84, 58, 79, 60, 61, 117, 63, 74, 87, 72, 81
Offset: 0

Views

Author

Michael Somos, Jun 11 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 7*x^4 + 6*x^5 + 9*x^6 + 13*x^7 + 9*x^8 + ...
G.f. = q^7 + 3*q^15 + 3*q^23 + 4*q^31 + 7*q^39 + 6*q^47 + 9*q^55 + 13*q^63 + ...
		

Crossrefs

Programs

  • GAP
    sequence := List([1..10^5],n->Sigma(8*n-1)/8); # Muniru A Asiru, Dec 31 2017
  • Maple
    with(numtheory): seq(sigma(8*n-1)/8, n=1..1000); # Muniru A Asiru, Dec 31 2017
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 8 n + 7] / 8];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^3 EllipticTheta[ 2, 0, x^4] / (16 x^(7/4)), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, sigma(8*n + 7) / 8)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^8 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)), n))};
    

Formula

Expansion of q^(-7/8) * eta(q^2)^6 * eta(q^8)^2 / (eta(q)^3 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 3, -3, 3, -2, 3, -3, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k)^3 * (1 + x^(2*k)) * (1 + x^(4*k))^2.
-8 * a(n) = A121613(4*n + 3). a(n) = sigma(8*n + 7) / 8.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Mar 28 2024