A258835 Expansion of psi(x)^3 * psi(x^4) in powers of x where psi() is a Ramanujan theta function.
1, 3, 3, 4, 7, 6, 9, 13, 9, 10, 15, 15, 13, 19, 18, 16, 30, 21, 19, 27, 21, 31, 31, 24, 25, 39, 33, 28, 48, 30, 35, 54, 33, 34, 52, 42, 45, 51, 39, 45, 55, 51, 50, 70, 45, 46, 78, 48, 54, 80, 57, 63, 78, 54, 55, 75, 84, 58, 79, 60, 61, 117, 63, 74, 87, 72, 81
Offset: 0
Examples
G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 7*x^4 + 6*x^5 + 9*x^6 + 13*x^7 + 9*x^8 + ... G.f. = q^7 + 3*q^15 + 3*q^23 + 4*q^31 + 7*q^39 + 6*q^47 + 9*q^55 + 13*q^63 + ...
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..20000 (first 1000 terms from G. C. Greubel).
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Programs
-
GAP
sequence := List([1..10^5],n->Sigma(8*n-1)/8); # Muniru A Asiru, Dec 31 2017
-
Maple
with(numtheory): seq(sigma(8*n-1)/8, n=1..1000); # Muniru A Asiru, Dec 31 2017
-
Mathematica
a[ n_] := If[ n < 0, 0, DivisorSigma[ 1, 8 n + 7] / 8]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x]^3 EllipticTheta[ 2, 0, x^4] / (16 x^(7/4)), {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, sigma(8*n + 7) / 8)};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^8 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)), n))};
Formula
Expansion of q^(-7/8) * eta(q^2)^6 * eta(q^8)^2 / (eta(q)^3 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 3, -3, 3, -2, 3, -3, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k)^3 * (1 + x^(2*k)) * (1 + x^(4*k))^2.
-8 * a(n) = A121613(4*n + 3). a(n) = sigma(8*n + 7) / 8.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Mar 28 2024
Comments