A258840 a(n) is the least integer k such that there are n values of i <= k for which gpf(i^2 + 1) = gpf(k^2 + 1), where gpf(x) is the greatest prime factor of x.
1, 3, 7, 38, 47, 157, 302, 327, 515, 616, 697, 798, 818, 1303, 2818, 3141, 3323, 5648, 6962, 9193, 9872, 13213, 13747, 15445, 16271, 17149, 18263, 20491, 20727, 24389, 26915, 29078, 31867, 37848, 38007, 40182, 41508, 43328, 46349, 55025, 62258, 63133, 66893
Offset: 1
Keywords
Examples
a(3) = 7 because gpf(7^2 + 1) = gpf(3^2 + 1) = gpf(2^2 + 1) = 5 => 3 occurrences. a(4) = 38 because gpf(38^2 + 1) = gpf(21^2 + 1) = gpf(13^2 + 1) = gpf(4^2 + 1) = 17 => 4 occurrences.
Programs
-
Maple
with(numtheory):nn:=70000:T:=array(1..nn):k:=0:kk:=1: for m from 1 to nn do: x:=factorset(m^2+1):n1:=nops(x):p:=x[n1]:k:=k+1:T[k]:=p: od: for n from 1 to 43 do:jj:=0:for k from kk to nn while(jj=0) do: q:=T[k]:ii:=0:jj:=0: for i from 1 to k do: if T[i]=q then ii:=ii+1: else fi: od:if ii=n then jj:=1:kk:=k: printf ( "%d %d \n",n,k):else fi: od:od:
-
PARI
gpf(n) = my(f=factor(n^2+1)); f[#f~,1]; nboc(k) = my(gpfk = gpf(k)); sum(i=1, k, gpf(i) == gpfk); a(n) = my(k = 1); while (nbo(k) != n, k++); k; \\ Michel Marcus, Jun 12 2015
Comments