cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258840 a(n) is the least integer k such that there are n values of i <= k for which gpf(i^2 + 1) = gpf(k^2 + 1), where gpf(x) is the greatest prime factor of x.

Original entry on oeis.org

1, 3, 7, 38, 47, 157, 302, 327, 515, 616, 697, 798, 818, 1303, 2818, 3141, 3323, 5648, 6962, 9193, 9872, 13213, 13747, 15445, 16271, 17149, 18263, 20491, 20727, 24389, 26915, 29078, 31867, 37848, 38007, 40182, 41508, 43328, 46349, 55025, 62258, 63133, 66893
Offset: 1

Views

Author

Michel Lagneau, Jun 12 2015

Keywords

Comments

A014442(n) gives the largest prime factor of n^2 + 1.
The primes of the sequence are 3, 7, 47, 157, 1303, 3323, 46349, ...
The corresponding sequence Gpf(a(n)^2+1) is 2, 5, 5, 17, 17, 29, 37, 37, 101, 101, 101, 101, 101, 101, 101, 101, 101, 97, 97, 97, 97, 401, 349, 389, 557, 557, 557, 557, 557, 421, 421, 421, 557, ... and it is interesting to observe the frequency of repetitions for the numbers 5, 17, 37, 97, 101, 557, ...

Examples

			a(3) = 7 because gpf(7^2 + 1) = gpf(3^2 + 1) = gpf(2^2 + 1) = 5 => 3 occurrences.
a(4) = 38 because gpf(38^2 + 1) = gpf(21^2 + 1) = gpf(13^2 + 1) = gpf(4^2 + 1) = 17 => 4 occurrences.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=70000:T:=array(1..nn):k:=0:kk:=1:
    for m from 1 to nn do:
    x:=factorset(m^2+1):n1:=nops(x):p:=x[n1]:k:=k+1:T[k]:=p:
    od:
    for n from 1 to 43 do:jj:=0:for k from kk to nn while(jj=0) do:
      q:=T[k]:ii:=0:jj:=0:
        for i from 1 to k do:
          if T[i]=q then ii:=ii+1:
          else
          fi:
        od:if ii=n then jj:=1:kk:=k:
        printf ( "%d %d \n",n,k):else fi:
      od:od:
  • PARI
    gpf(n) = my(f=factor(n^2+1)); f[#f~,1];
    nboc(k) = my(gpfk = gpf(k)); sum(i=1, k, gpf(i) == gpfk);
    a(n) = my(k = 1); while (nbo(k) != n, k++); k; \\ Michel Marcus, Jun 12 2015