cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258850 A(n,k) = k-th pi-based arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 4, 0, 0, 0, 1, 4, 5, 0, 0, 0, 0, 4, 3, 6, 0, 0, 0, 0, 4, 2, 7, 7, 0, 0, 0, 0, 4, 1, 4, 4, 8, 0, 0, 0, 0, 4, 0, 4, 4, 12, 9, 0, 0, 0, 0, 4, 0, 4, 4, 20, 12, 10, 0, 0, 0, 0, 4, 0, 4, 4, 32, 20, 11, 11, 0, 0, 0, 0, 4, 0, 4, 4, 80, 32, 5, 5, 12
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2015

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,  0,  0,   0,   0,    0,     0,     0, ...
  1,  0,  0,  0,  0,   0,   0,    0,     0,     0, ...
  2,  1,  0,  0,  0,   0,   0,    0,     0,     0, ...
  3,  2,  1,  0,  0,   0,   0,    0,     0,     0, ...
  4,  4,  4,  4,  4,   4,   4,    4,     4,     4, ...
  5,  3,  2,  1,  0,   0,   0,    0,     0,     0, ...
  6,  7,  4,  4,  4,   4,   4,    4,     4,     4, ...
  7,  4,  4,  4,  4,   4,   4,    4,     4,     4, ...
  8, 12, 20, 32, 80, 208, 512, 2304, 12288, 81920, ...
  9, 12, 20, 32, 80, 208, 512, 2304, 12288, 81920, ...
		

Crossrefs

Rows n=0,1,4,8 give: A000004, A000007, A010709, A258848.
Antidiagonal sums give A258847.
Main diagonal gives A258849.

Programs

  • Maple
    with(numtheory):
    d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    seq(seq(A(n, h-n), n=0..h), h=0..14);
  • Mathematica
    d[n_] := n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]; d[0] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    Table[Table[A[n, h-n], {n, 0, h}], {h, 0, 14}] // Flatten (* Jean-François Alcover, Apr 24 2016, adapted from Maple *)

Formula

A(n,k) = A258851^k(n).
A(A259016(n,k),k) = n.
A(A258975(n),n) = 1.

A259169 a(n) = n-th pi-based antiderivative of 8.

Original entry on oeis.org

8, 19, 15, 14, 43, 191, 201, 217, 1113, 1239, 986, 925, 375, 526, 689, 998, 3642, 3966, 5299, 4090, 7363, 20942, 150161, 117915, 218218, 597199, 472182, 494550, 1075362, 796042, 310086, 444985, 1403783, 1578955, 2702706, 10010173
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2015

Keywords

Examples

			a(7) = 217 -> 201 -> 191 -> 43 -> 14 -> 15 -> 19 -> 8.
a(8) = 1113 -> 1714 -> 1153 -> 191 -> 43 -> 14 -> 15 -> 19 -> 8.
		

Crossrefs

Row n=8 of A259016.

Formula

a(n) = min { m >= 0 : A258851^n(m) = 8 }.
Showing 1-2 of 2 results.