cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258876 Integers k such that both k and prime(k) have the same digital root.

Original entry on oeis.org

25, 32, 46, 56, 70, 88, 92, 98, 100, 113, 121, 130, 145, 146, 152, 175, 176, 182, 185, 206, 209, 212, 218, 227, 236, 239, 244, 248, 274, 293, 295, 301, 316, 317, 320, 323, 331, 338, 350, 352, 355, 362, 377, 386, 394, 397, 398, 406, 409, 413, 439
Offset: 1

Views

Author

Zak Seidov, Jun 13 2015

Keywords

Comments

Integers k such that A010888(k) = A038194(k).
Conjecture: a(n) ~ 9n. - Charles R Greathouse IV, Jun 17 2015

Examples

			Both 25 and prime(25) = 97 have 7 for a digital root.
Both 32 and prime(32) = 131 have 5 for a digital root.
		

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[FixedPoint[Total[IntegerDigits[#]] &, n] == Mod[Prime[n], 9], Sow[n]], {n, 439}]][[2, 1]] (* Seidov *)
    Select[Range[500], Mod[#, 9] == Mod[Prime[#], 9] &] (* Alonso del Arte, Jun 17 2015 *)
  • PARI
    isok(n) = (n % 9) == (prime(n) % 9); \\ Michel Marcus, Jun 17 2015
    
  • PARI
    n=0; forprime(p=2,1e4, if((p-n++)%9==0, print1(n", "))) \\ Charles R Greathouse IV, Jun 17 2015