cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258879 Numbers k such that k is the average of four consecutive primes k-7, k-1, k+1 and k+7.

Original entry on oeis.org

30, 60, 270, 570, 600, 1230, 1290, 1620, 2340, 2550, 3540, 4020, 4650, 5850, 6270, 6360, 6570, 10860, 11490, 14550, 15270, 17490, 19080, 19380, 19470, 23670, 26730, 29130, 32370, 34260, 41610, 48480, 49200, 49530, 51420, 51480
Offset: 1

Views

Author

Karl V. Keller, Jr., Jun 13 2015

Keywords

Comments

This sequence is a subsequence of A014574 (average of twin prime pairs), A256753 and A249674 (30*n).

Examples

			For k=30: 23, 29, 31, 37 are consecutive primes (k-7=23, k-1=29, k+1=31, k+7=37).
For k=60: 53, 59, 61, 67 are consecutive primes (k-7=53, k-1=59, k+1=61, k+7=67).
		

Crossrefs

Cf. A014574, A077800 (twin primes), A078854, A249674, A256753.

Programs

  • Magma
    [n: n in [13..2*10^5] | IsPrime(n-7) and IsPrime(n-1) and IsPrime(n+1) and IsPrime(n+7)]; // Vincenzo Librandi Jul 16 2015
    
  • Mathematica
    Select[ 5 Range@ 11000, PrimeQ[# - 7] && PrimeQ[# - 1] && PrimeQ[# + 1] && PrimeQ[# + 7] &] (* Robert G. Wilson v, Jun 28 2015 *)
  • PARI
    main(size)={my(v=vector(size),i,t=8);for(i=1,size,while(1,if(isprime(t-7)&&isprime(t-1)&&isprime(t+1)&&isprime(t+7),v[i]=t;break,t++));t++);return(v);} /* Anders Hellström, Jul 17 2015 */
  • Python
    from sympy import isprime, prevprime, nextprime
    for i in range(0, 10001, 2):
      if isprime(i-1) and isprime(i+1):
        if prevprime(i-1) == i-7 and nextprime(i+1) == i+7: print(i, end=', ')
    

Formula

a(n) = A078854(n) + 7.